w!

,‘/

L ¥ ]

iyl

QT

ARM Datasheet

Part No 1 85250 0360 0
Issue No 1.0
17 March 1987




(B

X

© Copyright Acom Computers Limited 1987

Neither the whole nor any part of the information contained in, or the product described in, this manual may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

Y

The product described in this manual is subject to continuous developments and improvements. All particulars of the
product and its use contained in this manual are given by Acorn Computers in good faith. However, all warranties
implied or expressed, including but not limited to implied warranties or merchantability or fitness for purpose, arc
excluded.

®

This manual is intended only to assist the reader in the use of the product. Acom Computers shall not be liable for any
loss or damage arising from the use of any information in this manual, or any error or omission in such information, or
any incorrect use of the product.

ISBN 1 85250 026 3

® ®

Published by:
Acomn Computers Limited, Fulbourn Road, Cherry Hinton, Cambridge CB1 4JN, UK

RO OO RO

® ® ®
l'wlwuﬁmi’—-h’b—-—'\-w

@

)

i ’ ARM Datasheet

m

B A R i S d B s e S N Ract ek S a Mcat L O s Sl s bic A BT it wur Rt s L S AL RS S L R TSt



Contents

1. Introduction
2. Block Diagram
3. Functional Diagram
4. Description of Signals
5. Programmers’ Model
5.1 Introduction
5.2 Registers
5.3 Exceptions
5.3.1 FIQ
5.32 IRQ
5.3.3 Address exception trap
5.3.4 Abort
5.3.5 Software interrupt
5.3.6 Undefined instruction trap
- 5.3.7 Reset
5.3.8 Vector Summary
5.3.9 Exception Priorities
5.3.10 Interrupt Latencies
6. Instruction Set
6.1 The condition field
6.2 Branch and branch with link (B, BL)
6.2.1 The link bit
6.2.2 Assembler syntax
6.2.3 Examples
6.3 Dala processing
6.3.1 Operations
6.3.2 PSR flags
6.3.3 Shifts
Instruction specified shift amount
Register specified shift amount
6.3.4 Immediate operand rotates
6.3.5 Writing to R15
6.3.6 Using R15 as an operand
6.3.7 Asscmbler syntax
6.3.8 Examples
6.4 Multiply and multiply-accumulate (MUL, MLA)
6.4.1 Operand restrictions
6.4.2 PSR flags
6.4.3 Writing to R15
6.4.4 Using R15 as an operand
6.4.5 Assembler syntax
6.4.6 Examples
6.5 Single data transfer (LDR, STR)
6.5.1 Offsets and auto-indexing
6.5.2 Shifted register offset
6.5.3 Bytes and words
6.5.4 Use of R15
6.5.5 Address exceptions
6.5.6 Data Aborts

ARM Datasheet

O O ~1 ~3 =1~ W —

ii




6.5.7 Assembler syntax 27
6.5.8 Examples 2§ _
6.6 Block data transfer (LDM, STM) 29 @
6.6.1 The register list 29
6.6.2 Addressing modes 29 &
Post-increment addressing 30 <
Pre-increment addressing 30
Post-decrement addressing 31 65 -
Pre-decrement addressing 31 —
6.6.3 Transfer of R15 32
6.6.4 Forcing transfer of the user bank 32 @ "
6.6.5 Use of R15 as the base 32 :
6.6.6 Inclusion of the base in the register list 32
6.6.7 Address exceptions 32 @
6.6.8 Data Aborts 32
Aborts during STM instructions 33
Aborts during LDM instructions 33 G
6.6.9 Assembler syntax v 33 \
Addressing mode names 33
6.6.10 Examples 34 @ !
6.7 Software interrupt 35 !
6.7.1 Return from the supervisor 35 1
6.7.2 Comment ficld 35 @
6.7.3 Assembler syntax 35 )‘
6.7.4 Examples 36 ,
6.8 Co-Processor data operations 37 @3 ‘
6.8.1 The Co-Processor ficlds 37 [
6.8.2 Assembiler syntax 37 @ |
6.8.3 Examples 38
6.9 Co-Processor data transfers 39
6.9.1 The Co-Processor ficlds 39 @ !
6.9.2 Addressing modes 39
6.9.3 Use of R15 : , 40
6.9.4 Forcing address translation 40 @ i
6.9.5 Address exceptions 40
6.9.6 Data aborts 40
6.9.7 Assembler syntax 40 @ '
6.9.8 Examples 41 !
6.10 Co-Processor register transfers 42 |
6.10.1 The Co-Processor fields 42 E‘J
6.10.2 Transfers to R15 42 ,
6.10.3 Transfers from R15 42 o~
6.10.4 Assembler syntax 43 Nl
6.10.5 Examples 43
6.11 Undefined instructions 44
6.11.1 Assembler syntax 44 @[
6.12 Instruction set summary 45 L
6.13 Instruction set examples 46 1
6.13.1 Using the conditional instructions 46 <
6.13.2 Pseudo random binary sequence generator 46
6.13.3 Multiplication by constant using the barrel shifter 47 @! it
6.13.4 Loading a word from an unknown alignment 48
6.13.5 Sign/zero extension of a half word 48 _
il
v ARM Datasheet Y

RS St v -——-,-—v,~‘|r3 1“;,‘ 1'\;%?@73‘("\.‘ RNTIRITIINY ‘\f"i"’\ X i'ﬁ:‘ Tﬁvw"ﬁ:""'%‘%”{( TR, “:ﬁ Y [“-,:, ¥ o

Sea 1 Y NAR <y hd K v\ e \..«,R BLA ¥




'

T

i

B

6.13.6 Return setting condition codes 48
7. Memory Interface 49
7.1 Cycle types 49
7.2 Byte addressing 51
7.3 Address timing 51
7.4 Memory management 52
7.5 Use of MEMC 52
8. Co-Processor Interface 53
8.1 Interface signals 53
8.1.1 Co-Processor present/absent 53
8.1.2 Busy-waiting 53
8.1.3 Pipeline following _ 53
8.2 Data transfer cycles 53
8.3 Register transfer cycle 54 ;
8.4 Privileged instructions 54 :
8.5 Idempotency 54 :
8.6 Undefined instructions S5 i
8.7 Use of MEMC 55 ’
9. Instruction Cycle Operations 56
9.1 Branch and branch with link 56
9.2 Data operations 56
9.3 Multiply and multiply accumulate 57
9.4 Load register 58
9.5 Store register 59
9.6 Store multiple registers 59
9.7 Load multiple registers 60
9.8 Software interrupt and exception entry 61
9.9 Co-Processor data operation 61
9.10 Co-Processor data transfer (from memory to Co-Processor) ' 62
9.11 Co-Processor data transfer (from Co-Processor to memory) 63
9.12 Co-Processor register transfer (Load from Co-Processor) 63
9.13 Co-Processor register transfer (Store to Co-Processor) 64
9.14 Undefined instructions and Co-Processor absent 64
9.15 Unexecuted instructions 64
9.16 Instruction speeds 65
10. DC Parameters 66
10.1 Absolute Maximum Ratings 66
10.2 DC Operating Conditions 67
10.3 DC Characteristics 68
11. AC Parameters 69
12. Packaging 73
13. Compatibility with Prototype ARMs 75
13.1 Plug-in compatibility 75
13.2 Bug fixes 75
13.3 Design differences 75

ARM Datasheet v







W

g

-

B

(%

e 8

ok S
»

1. Introduction

The ARM (Acorn RISC Machine) is a general purpose 32-bit single-chip microprocessor. The architecture
is based on Reduced Instruction Set Computer (RISC) principles, and the instruction set and related decode
mechanism are greatly simplificd compared with microprogrammed Complex Instruction Set Computers.
This simplification results in a high instruction throughput and a good real-time interrupt response from a
small and cost-effective chip.

The instruction sct comprises nine basic instruction types. Two of these make use of the on-chip arithmetic
logic unit (ALU), barrel shifter and multiplicr to perform high-speed operations on the data in a bank of 27
registers, each 32 bits wide. Two instruction types control the transfer of data between main memory and
the register bank, onc optimised for flexibility of addressing and the other for rapid context switching. Two
instructions control the flow and privilege level of exccution, and the remaining three types are dedicated to
the control of external Co-Processors which allow the functionality of the instruction set to be extended off-
chip in an open and uniform way.

The ARM instruction sct has proved to be a good target for compilers of many different high-level
languages. Where required for critical code segments, assembly code programming is also straightforward,
unlike some RISC processors which depend on sophisticated compiler technology to manage complicated
instruction interdependencies.

Pipelining is employed so that all parts of the processing and memory systems can operate continuously.
Typically, while one instruction is being executed, its successor is being decoded, and a third instruction is
being fetched from memory.

The memory interface has been designed to allow the performance potential to be realised without incurring
high costs in.the memory system. Speed critical control signals are pipelined to allow system control
functions to be implemcnted in standard low-power logic, and these control signals facilitate the
exploitation of the fast local access modes offered by industry standard dynamic random access memories
(DRAMEs). '

FEATURES
*  32-bit data bus
*  26-bit address bus giving a 64-MByte uniform address space
*  Support for virtual memory systems
*  Simplc but powerful instruction set
*  Co-Processor interface for instruction set extension
*  Good high-level language compiler support
*  Peak execution rate of 10 million instructions per second (MIPS)
*  Fast interrupt response for real-time applications
*  Low power consumption (0.1 W typical) with a single +5 V supply
*  84-pin JEDEC B leadless chip carrier or plastic leaded chip carrier

ARM Datasheet Ji




® ® ™

2. Block Diagram

A[0:25] @—
ﬁ Bw W
BE —| | :
A , ADDRESS REGISTER , <—— PH1 =
ALE — ! .
[+
J & . — PH2
¢ . @
|| R [
NCREM °
s ) 1<— IRQ @ ;
u i
s i
j l—— FIQ @ !
A <—— RESET
L REGISTER BANK |
v (27 32-bit registers) @
§ l<—— ABORT

ﬂﬂ
@

INSTRUCTION|—3 OPC
DECODER orC CH:
—N % k
A 8
BOOTH'S CONTROL S—
5 — /] MULTIPLER b [oGgiC = [—» TRANS @1
~—3 M([0,1] l
X

i

7

MREQ
BARREL
SHIFTER

@®

SEQ -

-

NS

\ 32-BIT ALU /

<— CpPA
-
1<— CPB

G
UKW W W -

15 ~ Dy

INSTRUCTION PIPELINE
PBE —» WRITE DATA REGISTER & READ DATA REGISTER

Z 7>

D{0:31] D[0:31]

d

W |

2 ARM Datasheet

m ®

[ —

R A T UV R N U AR T N RS W TR i ey Tk
N RN AR R A =;."Q?$‘%:<‘*?$§f’; :
LAY . . PR SRR I . IRSAVRURE A Nk o3



3. Functional Diagram

n
MREQ ~ |
] PH1 > SEQ .
: Clocks PH2 _
oy Af0:25] >
Memory
e Interface ;
IRQ _ '
Interrupts FIQ - R/W -
B/W
2 >/
N RESET ARM OPC N
| TRANS Memory
= Management
ALE M[0,1] > Interface
- . ABORT
hd Bus ABE o -t S
Control
DBE o
)
 cpa Col-Pror;:essor
A VDD 3) nterface
Power vss (3) . CPB
3 - ~
5
7
ARM Daxashee!‘ ) 3




4. Description of Signals

Name Pin Type Description

PH2 1 ICk
PH1 2 ICk
RIW 3 oC

MREQ 5 oC

ABORT 6 IT

IRQ 7 IT

FIQ 8 IT

RESET 9 IT

TRANS 10 oC

Phasc two clock.

Phase one clock.

Not read / write. When HIGH this signal indicates a processor write ‘

cycle; when LOW, a read cycle. It becomes valid during phase 2 of the
cycle before that to which it refers, and remains valid to the end of
phase 1 of the referenced cycle.

Not op-code fetch. When LOW this signal indicates that the processor is
fetching an instruction from memory; when HIGH data (if anything) is
being transferred. The signal becomes valid during phasc 2 of the
previous cycle, remaining valid through phase 1 of the referenced cycle.

Not memory request. This signal, when LOW, indicates that the
Processor requires memory access during the following cycle. The signal
becomes valid during phase 1, remaining valid through phase 2 of the

cycle preceding that to which it refers.

Memory abort. This is an input which allows the memory system to tell
the processor that a requested access is not allowed. The signal must be
valid before the end of phase 1 of the cycle during which the memory
transfer is attempted.

Not interrupt request. This is an asynchronous interrupt request to the
processor which causes it to be interrupted if taken LOW when the
appropriate enable in the processor is active. The signal is level sensitive
and must be held LOW until a suitable response is received from the
processor.

Not fast interrupt request. As IRQ, but with higher priority. May be
taken LOW asynchronously to interrupt the processor when the
appropriate enable is active.

Reset. This is a level sensitive input signal which is used to start the
processor from a known address. A HIGH level will cause the instruction
being executed to terminate abnormally. When RESET becomes LOW
for at least one clock cycle, the processor will re-start from address 0.
RESET must remain HIGH for at least two clock cycles, and during the
HIGH period the processor will perform dummy instruction fetches with
the address incrementing from the point where reset was activated. The
address value will overflow to zero if RESET is held beyond the
maximum address limit.

Not memory translate. When this signal is LOW it indicates that the
processor is in user mode, or that the supervisor is using a single transfer
instruction with the force translate bit active. It may be used to tell
memory management hardware when uranslation of the addresses should
be turned on, or.as an indicator of non-user mode activity.

vDD 11,32,55 PWR Supply.

cr et A T R T T AN LT TR A T Ry A M e T A Ry B £164 4 Mt TRAT AR AL S
E N Tt e e R TRK Y M _S,in": RN MM f_x‘,"f‘,a STRONT S

ARM Datasheet

A

T
e : »*
PR PR L S

'y

® ®

PN NN AN C NI

m (&

R




-

-/

w @ L W

~ams

. @ w w J

VSS
M[1,0]

SEQ

ALE

A[25:0]

ABE

D[0:31]

DBE

33,5475
13,14

15

16

17-31,34-44 OCZ

45

46-53,56-74,
77-81

83

84

?'c" .'.{59"? EANEED Ak A %8 DAL RO R R AT
.- Tl Rl RAR

Description of Signals

PWR  Supply.

oC

ocC

IT

IC

I0TZ

IT

ocC

Not processor mode. These are output signals which are the inverses of
the internal status bits indicating the processor operation mode.

Sequential address. This is an output signal. It will become HIGH when
either:

« the address for the next cycle is being generated in the address
incrementer, so will be equal to the present address (in bytes) plus
4, or

+ during a cycle which did not use memory (MREQ inactive),
when the next cycle will use memory and the address will be the
same as the current address.

The signal becomes valid during phase 1 and remains so through phase 2
of the cycle before the cycle whose address it anticipates. It may be
used, in combination with the low-order address lines, to indicate that the
next cycle can use a fast memory mode (for example DRAM page
mode) and/or to by-pass the address translation system.

Address latch enable. This input to the processor is used to-control
transparent latches on the address outputs. Normally the addresses change
during phase 2 to the value required during the next cycle, but for direct
interfacing to ROMs they are required to be stable to the end of phase 2.
Taking ALE LOW until the end of phase 2 will ensure that this happens.
If the system does not require address lines to be held in this way, ALE
may be held permanently HIGH. The ALE latch is dynamic, and ALE
should not be held LOW indefinitely.

Addresses. This is the processor address bus. If ALE (address latch
enable) is HIGH, the addresses become valid during phase 2 of the cycle
before the one to which they refer and remain so during phase 1 of the
referenced cycle. Their stable period may be controlled by ALE as
described above.

Address bus cnable. This is an input signal which, when LOW, puts the
address bus drivers into a high impedance state. ABE may be tied HIGH
when there is no system requirement to turn off the address drivers.

Data Bus. These are bi-directional signal paths which arc used for data
ransfers between the processor and external memory, as follows:

«  during read cycles (when R/W = 0), the input data must be valid
before the end of phase 2 of the transfer cycle

« during write cycles (when R/W = 1), the output data will become
valid during phase 1 and remain so throughout phase 2 of the
transfer cycle.

Data bus enable. This is an input signal which, when LOW, forces data
bus drivers into a high impedance state. (The drivers will always be high
impedance except during write cycles, and DBE may be tied HIGH in
systems which do not require the data bus for DMA or similar
activities.)

Not byte / word. This is an output signal used by the processor to
indicate to the external memory System when a data transfer of a byte

ARM Datasheet S

IR St *
LIS Rt




Chapter 4
crI 82
CcpPB 12

CPA 76

oC

IT

IT

length is required. The signal is HIGH for word transfers and LOW for
byte transfers and is valid for both read and write cycles. The signal will
become valid during phasc 2 of the cycle before the one during which
the transfer will take place. It will remain stable throughout phase 1 of
the transfer cycle.

Co-Processor  instruction. When ARM executes a Co-Proccssor
mstruction, it will take this output LOW and wait for a response from
the Co-Processor. The action taken will depend on this response, which
the Co-Processor signals on the CPA and CPB inputs.

Co-Processor busy. A Co-Processor which is capable of performing the
operation which ARM is requesting (by asserting CPI), but cannot
commit to starting it immediately, should indicate this by letting CPB
float HIGH. When the Co-Processor is rcady to start it should take CPB
LOW. ARM samplecs CPB at the end of phase 1 of the cycle when
CPI is LOW.

Co-Processor absent. A Co-Processor which is capable of performing the
operation which ARM is requesting (by asserting CPI) should take CPA
LOW immediately. If CPA is HIGH at the end of phase | of the cycle
when CPIis LOW, ARM will abort the Co-Processor handshake and
take the undefined instruction trap. If CPA is LOW and remains LOW,
ARM will busy-wait until CPB is LOW and then complete the Co-
Processor instruction.

Key to Signal Types

ICk Unbuffered clock inputs
IT Input with TTL compatible levels
ocC Output with CMOS compatible levels
0ocz 3-state output with CMOS compatible levels
[0TZ Bi-dircctional 3-state input/output with TTL compatible levels
PWR Power pins
ARM Datasheet
N T T R T T T T T T TR T R TR

R R

-

®m ®

® ®» ®» H» % ®

» DA DB BB BB

t

¥ VR W R R WIS U BRI W WADER| W SRR W WIS W DOSWTN 1

N

m m

§

Ve

™

i

RV preg TW meea e e




5.Programmers’ Model

5.1 Introduction

ARM has a 32 bit data bus and a 26 bit address bus. The data types the processor supports are Bytes (8
bits) and Words (32 bits), where words must be aligned to four byte boundaries. Instructions are exactly
one word, and data operations (e.g. ADD) are only performed on word quantities. Load and store
operations can transfer either bytcs or words.

ARM supports four modes of operation, including protected supervisor and interrupt handling modes.

R

5.2 Registers
The processor has 27 32-bit registers, 16 of which are visible to the programmer at any time. The visible ‘
subset depends on the processor mode; special registers are switched in to support interrupt and supervisor ; ,

processing. The register bank organisaticn is shown in figure 1.
User mode is the normal program execution state; registers RO-15 are directly accessible.

All registers are general purpose and may be used to hold data or address values, except that register R15
contains the Program Counter (PC) and the Processor Status Register (PSR). Special bits in some
instructions allow the PC and PSR to be treated together or separately as required. Figure 2 shows the
allocation of bits within R15.

R14 is used as the subroutine Link register, and receives a copy of R15 when a Branch and Link
instruction is executed. It may be treated as a general purpose register at all other times. R14_svc, R14_irq
and R14_fiq are used similarly to hold the return values of R15 when interrupts and exceptions arise, or
- when Branch and Link instructions are executed within supervisor or interrupt routines.

The FIQ processing state (described in the Exceptions section) has seven private registers mapped to R8-14
(R8_fig-R14_fiq). Many FIQ programs will not need to save any registers.

The IRQ processing state has two private registers mapped to R13 and R14 (R13_irq and R14_irg).

Supervisor mode (entered on SWI instructions and othier traps) has two private registers mapped to R13 and
e R14 (R13_svc and R14_svc).

The two private registers allow the IRQ and supervisor modes each to have a private stack pointer and link
register. Supervisor and IRQ mode programs are expected to save the User state on their respective stacks
and then use the User registers, remembering to restore the User state before returning.

In User mode only the N, Z, C and V bits of the PSR may be changed. The I, F and Mode flags will
change only when an exception arises. In supervisor and interrupt modes all flags may be manipulated

directly.

) N

5.3 Exceptions

Exceptions arise whenever there is a need for the normal flow of program execution to be broken, so that
(for instance) the processor can be diverted to handle an interrupt from a peripheral. The processor slate
9 just prior to handling the exception must be preserved so that the original program can be resumed when
the exception routine has completed. Many exceptions may arise at the same time.

" ARM handles exceptions by making use of the banked registers to save state. The old PC and PSR are
9 copied into the appropriate R14, and the PC and processor mode bits are forced to a value which depends
on the exception. Interrupt disable flags are set where required to prevent otherwise unmanageable nestings

ARM Datasheet 7

A 5 86 2 S R e R AR TR W e g e R MR P K
Q*f:»-.i el Wt d ﬂ,‘ﬂl}; e S PP Hog s

[ R I AN it SARL W i 262




Chapter 5

~
[
1

® W

user mode | svc mode I irq mode | fiq mode“ : ]
RO
R1 .
R2
R3
R4
R5
R6
R7
R8 R8_fiq
R9 R9_fig
R10 R10_fiq
R11 R11_fiq
Rt2 R12_fig
R13 R13_svc R13_irqg R13_fiq
R14 R14_svc R14_irq R14_fiq
R15 (PC/PSR)

SLINNEL L)

1

m ® ®» M

»

L]

Pe .

m

1]
§

m m m ®

of exceptions. In the case of a re-entrant interrupt handler, R14 should be saved onto a stack in main
memory before ré-enabling the interrupt. When multiple exceptions arise simultaneously a fixed priority

Figure 1: Register Organisation

determines the order in which they are handled.

CE T TN, i, TR
R Vol

ARM Datasheet

W N Ty A O Y A T T RO e e AR TR e v Y

@

!

¥

m

W W W —

m m

AN Stakiparrarant B ORRYAIEY
U TR




- 8 W

~—

Programmers’ Model

31 30 29 28 27 26 325 2 1 0
N|{z]lcjiVv]IIF PROGRAM COUNTER (PC) M1 | MO
L ] 1

Processor Mode

00 = User Mode
01 = FIQ Mode
10 = IRQ Mode
11 = Supervisor Mode

Program Counter
{Word Aligned)

FlQ Disable
0 = Enable
1 = Disable

iRQ Disable
0 = Enable
1 = Disable

Overflow

Carry/Not Borrow/
Rotate Extend
Zero

Negative/
Signed Less Than

Figure 2: The Program Counter (PC) and Processor Status Register (PSR)

5.3.1 FIQ

The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the ﬁ_(i pin LOW. This input
can accept asynchronous transitions, and is delayed by one clock cycle for synchronisation before it can
affect the processor execution flow. It is designed to support a data transfer or channel process, and has
sufficient private registers to remove the need for register saving in such applications, so that the overhead
of context switching is minimised. The FIQ exception may be disabled by sctting the F flag in the PSR
(but note that this is not possible from user mode). If the F flag is clear ARM checks for a LOW level on
the output of the FIQ synchroniser at the end of each instruction. When ARM is FIQed it will:

(1) save R15in R14_fiq;
(2) force MO, M1 10 FIQ mode and set the F and I bits in the PC word;
(3) force the PC to fetch the next instruction from address 1CH.

To return normally from FIQ use SUBS PCR14_fig,#4. This will resume execution of the interrupted code
sequence, and restore the original mode and interrupt enable state.

5.32 IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level on the IRQ pin. It
has a lower priority than FIQ, and is masked out when a FIQ sequence is entered. Its effect may be
masked out at any time by setting the I bit in the PC (but note that this is not possible from user mode). If
the I flag is clear ARM checks for a LOW level on the output of the IRQ synchroniser at the end of each
instruction. When successfully IRQed ARM will:

ARM Datasheet 9




Chapter S

(1) save R15 in R14_irq;
(2) force MO, M1 to IRQ mode and sct the 1 bit in the PC word:
(3) force the PC to fetch the next instruction from address 18H.

To return normally from IRQ use SUBS PC.R14_irq,#4. This will restore the original processor state and
thereby re-enable IRQ.

5.3.3 Address exception trap

An address exception arises whenever a data transfer is attempted with a calculated address above
3FFFFFFH. The ARM address bus is 26 bits wide, and an address calculation will have a 32-bit result. If
this result has a logic "1" in any of the top 6 bits it is assumed that the address overflow is an error, and
the address exception trap is taken.

Notc that a branch cannot cause an address exception, and a block data transfer instruction which starts in
the lcgal area but increments into the illegal area will not trap. The check is peformed only on the address
of the first word to be transferred.

When an address exception is scen ARM will:
(1)  if the data transfer was a store, force it to load. (This protects the memory from spurious writing.)

(2) complete the instruction, but prevent internal state changes where possible. The state changes are the
same as if the instruction had aborted on the data transfer.

(3) save R15 in R14_svc;
(4) force MO, M1 to supervisor mode and sct the I bit in the PC word;
(5) force the PC to fetch the next instruction from address 14H.

Normally an address exception is caused by erroneous code, and it is inappropriate to resume execution. If
a return is required from this trap, use SUBS PC,R14_svc,#4. This will return to the instruction after the
onc causing the trap.

5.3.4 Abort

The Abort signal comes from an external Memory Management system, and indicates that the current
memory access cannot be completed. For instance, in a virtual memory system the data cormresponding to

the current address may have been moved out of memory onto a disc, and considerable processor activity |

may be required to recover the data before the access can be performed successfully. ARM checks for an
Abort at the end of the first phase of cach bus cycle. When successfully Aborted ARM will respond in one
of three ways: :

(i) if the abort occurred during an instruction prefetch (a Prefetch Abori), the prefetched instruction is
marked as invalid; when it comes to execution, it is reinterpreted as below. (If the instruction is not
executed, for example as a result of a branch being taken while it is in the pipeline, the abort will
have no effect.)

(i)  if the abort occurred during a data access (a Data Abort), the action depends on the instruction type.
Data transfer instructions (LDR, STR) are aborted as though the instruction had not executed. The
LDM and STM instructions complete, and if writeback is set, the base is updated. If the instruction

" would normally have overwritten the base with data (i.e. LDM with the base in the transfer list), this
overwriting is prevented. All register overwriting is prevented after the Abort is indicated, which
means in particular that R15 (which is always last to be transferred) is preserved in an aborted LDM
instruction.

(iii) if the abort occurred during an internal cycle it is ignored.

10 ARM Datasheet

b

LKL L R

m | ® B W

W B Pt e o

——

L

" m®

m o @

{

)
WEPADE W WS P Eee v ewemen W

r

7

-

UL

T TR TR A T R T R L N e e e T L T R T Y I Y T T T R T T I T TR TR
. . AT . R DR 1 . I I



AF

Programmers’ Model

Then, in cases (i) and (ii):

(1) save R15 in R14_svc;

(2) force MO, M1 to supervisor mode and set the I bit in the PC word;

(3) force the PC to fetch the next instruction from address OCH for Prefetch Abort, 10H for Data Abort.

To continue after a Prefetch Abort use SUBS PC.R14_sve #4. This will attempt to re-execute the aborting
instruction (which will only be effective if action has been taken to remove the cause of the original abort).
A Data Abort requires any auto-indexing to be reversed before returning to re-execute the offending
instruction, the return being done by SUBS PC,R14_svc,#8.

The abort mechanism allows a demand paged virtual memory system to be implemented when a suitable
memory management unit (such as MEMC) is available. The processor is allowed to generate arbitrary
addresses, and when the data at an address is unavailable the memory manager signals an abort. The
processor traps into system softwarce which must work out the cause of the abort, make the requested data
available, and retry the aborted instruction. The application program needs no knowledge of the amount of
memory available to it, nor is its state in any way affected by the abort.

5.3.5 Software interrupt

The software interrupt is used for getting into supervisor mode, usually to request a particular supervisor
function. ARM will:

(1) save R15 in R14_svc;

(2) force MO, M1 to supervisor mode and set the I bit in the PC word;

(3) force the PC to fetch the next instruction from address O8H.

To return from a SvWI, use MOVS PC,R14_svc. This returns to the instruction following the SWIL.

5.3.6 Undefined instruction trap

When ARM executes a Co-Processor instruction or an Undefined instruction, it offers it to any Co-
Processors which may be present. If a Co-Processor can perform this instruction but is busy at that
moment, ARM will wait until the Co-Processor is ready. If no Co-Processor can handle the instruction
ARM will take the undefined instruction trap.

The trap may be used for software emulation of a Co-Processor in a system which does not have the Co-
Processor hardware, or for general purpose instruction sct extension by software emulation.

When the undefined instruction trap is taken ARM will:

(1) save R15 in R14_svc;

(2) force MO, M1 to supervisor mode and set the I bit in the PC word;
(3) force the PC to fetch the next instruction from address 04H.

To return from this trap (after performing a suitable emulation of the required function), use MOVS
PCR14_svc. This will return to the instruction following the undefined instruction.

ARM Datasheet 11

LY ke
NS S R

S1 VAL LSRR SR
Y 1’ ¥, ;".':




Chapter 5

5.3.7 Reset
When Reset gocs HIGH ARM will:

M

@
3
)

stop the currently cxecuting instruction and start exccuting no-ops. When Resct goes LOW again it
will:

save R15 in R14_svc;
force MO, M1 to supervisor mode and sct the F and I bits in the PC word;

force the PC to fcich the next instruction from address 0H.

5.3.8 Vector Summary

Address

0000000 Reset

0000004 Undefined instruction
0000008 software interrupt
000000C Abort (prefetch)
0000010 Abort (data)

0000014 Address exception
0000018 IRQ

000001C FIQ

These arc byte addresses, and will normally contain a branch instruction pointing to the rclevant routine.
The FIQ routine might reside at 000001CH onwards, and thereby avoid the need for (and execution time

of)

a branch instruction.

5.3.9 Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they

wil
(D
)
3
4
(5)
(6)

1 be handled:
Resct (highest priority)
Address exception, Data abort
FIQ
IRQ
Prefetch abort

Undefined Instruction, Software interrupt (lowest priority)

Note that not all exceptions can occur at once. Address exception and data abort are mutually exclusive,
since if an address is illegal the ARM will ignore the ABORT input. Undefined instruction and software
interrupt are also mutually exclusive since they each correspond to particular (non-overlapping) decodings
of the current instruction.

If an address exception or data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the F flag
in the PSR is clear), ARM will enter the address exception or data abort handler and then immediately
proceed to the FIQ vector. A normal return from FIQ will cause the address exception or data abort handler
to resume execution. Placing address exception and data abort at a higher priority than FIQ is necessary to
ensure that the transfer error does not escape detection, but the time for this exception entry should be
added to worst case FIQ latency calculations.

12

ARM Datasheet

LN

LU L)

®m ® M’

® ®

= et —

m ®m ®

}

m ®

R

\ @
1
i
Lol
-

L] Som ' - [P

T R T S e e e R T e o T v e T T L T T T T TR s T T T T R




. ki )

Programmers’ Model

5.3.10 Interrupt Latencies

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can
take to pass through the synchroniser (Tsyncmax), plus the time for the longest instruction to complcte
(Tldm, the longest instruction is load multiple registers), plus the time for address exception or data abort
entry (Texc), plus the time for FIQ entry (Tfig). At the end of this time ARM will be executing the
instruction at 1CH.

Tsyncmax is 2.5 processor cycles, Tldm is 18 cycles, Texc is 3 cycles, and Tfig is 2 cycles. The total time

is therefore 25.5 processor cycles, which is just over 2.5 microseconds in a system which uses a continuous
10 MHz processor clock. In a DRAM based system running at 4 and 8 MHz, for example using MEMC,

. this time becomes 4.5 microseconds, and if bus bandwidth is being used to support video or other DMA

ISR B S AL SR ARa R 2 D 30 £ e W2 00

activity, the time will increase accordingly.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher priority
and could delay entry into the IRQ handling routine for an arbitrary length of time.

The minimum latency for FIQ or IRQ consists of the shortest time the request can take through the
synchroniser (T'syncmin) plus Tfiq. This is 3.5 processor cycles.

ARM Datasheet 13

O FETRIT PN S A

TR




(®

6. Instruction Set

® & ®

6.1 The condition field

31 28 27 0

(‘.\ .

Cond

—

L)

Condition field
0000 = EQ - Z set {equal)
0001 = NE - Z clear (not equa)
0010 = CS - C set (unsigned higher or same)
0011 « CC - C clear {unsignad lower)
0100 = Mi - N set (negative)
0101 = PL - N clear {positive or zero)
0110 = VS - V set {overtlow)
0111 = VC - V clear (no overtiow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set {unsigned lower or same)
1010 « GE - N set and V set, or N clear and V clear (greater of aqual)
1011 « LT - N set and V clear, or N clear and V set {less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V dlear (greater than)
1101 = LE - Z set, of N set and V clear, or N clear and V set {less than or equal)
1110 = AL - always
1111 = NV - never

All ARM instructions are conditionally executed, which means that their execution may or may not take
place depending on the values of the N, Z, C and V flags in the PSR.at the end of the preceding
instruction.

If the ALways condition is specificd, the instruction will be exccuted irrespective of the flags, and likewise
the NeVer condition will cause it not to be executed (it will be a no-op, ic take one cycle and have no
effect on the processor state).

(!\(!\@\(!\‘(!\(!\(!\'

The other condition codes have meanings as detailed above, for instance code 0000 (EQual) causes the

instruction to be cxecuted only if the Z flag is set. This would correspond to the case where a compare
. (CMP) instruction had found the two operands to be equal. If the two operands were different, the compare
i instruction would have cleared the Z flag, and the instruction will not be executed.

m ™ ™ m ™

.

14 ARM Datasheet (

P
4

VR

[ e o A g RESTIRC D T N e T v:-—‘--—gy@;ﬂ*\n-ﬂmmmmr;-ﬂ-y-g:‘ﬂ'?zj‘ ?}l‘zg"{"‘;ﬁ:.;,‘ Tt
. " . : -t LA PO A T N e Tt



Instruction Set

6.2 Branch and branch with link (B, BL)

31 28 27 25 24 23 0
Cond 101 |L offset
L
Link bit
0 = Branch
1 = Branch with Link <
Condition field
7' see section 6.1
The instruction is only executed if the condition specified in the condition field is true (see section 6.1).
_3 All branches take a 24 bit offsct. This is shifted left two bits and added to the PC, with any overflow being

ignored. The branch can thercfore reach any word aligned address within the address space. The branch
offset must take account of the prefetch operation, which causes the PC to be 2 words ahead of the current

a instruction.

6.2.1 The link bit

Branch with Link writes the old PC and PSR into R14 of the current bank. The PC value written into the
link register (R14) is adjusted to allow for the prefetch, and contains the address of the instruction

following the branch and link instruction.

To return and restore the PSR use MOVS PC,R14 if the link register is still valid or LDM Rn!,{PC}~ if
- the link register has been saved onto a stack. To return without restoring the PSR use MOV PCRI14 if the
link register is still valid or LDM Rn!,{PC} if the link register has been saved onto a stack.

6.2.2 Assembler syntax
; B{L}{cond} <expression>
5 (L} is used to request the Branch with Link form of the instruction. If absent, R14 will not be affected by
i the instruction.

{cond) is a two-char mnemonic as shown in section 6.1 (EQ, NE, VS etc.). If absent then AL (ALways)
v will be used.

<expression> is the destination. The assembler calculates the offset.

N 2

- ltems in {) are optional. Items in <> must be present.

ARM Datasheet 15




Chapter 6

6.2.3 Examples

16

here BAL here ;

B there H

CMP R1, #0 ;

BEQ fred ;

BL sub + ROM ;

ADDS R1, #1 H
BLCC sub ;

BLNV sub H

assembles to EAFFFFFE
(note effect of PC offset)

Always condition used as default

compare register 1 with zero

branch to fred if register 1 was zero

otherwise continue to next instruction
unconditionally call subroutine at computed address
add 1 to register 1, setting PSR flags on the result
call subroutine if the C flag is clear, which will be
the case unless Rl contained FFFFFFFFH

otherwise continue to next instruction

NeVer call subroutine (this is a NO-OP)

ARM Datasheet

RN TR T T R B Y T AR R R S RO R N R
s R N, e s L =% R A

~ ISR N ELE:
v N T

|

l

m@@

-
~—

-

® |

i"“_w

v

L]

® ®®® ®

Ve
\ i :
e e aamn B B aaa I

®

pEm TP

m ¢’

™ M




-

& W

-

N

Instruction Set

6.3 Data processing

3 28 27 26 25 24 21 20 19 16 15 12 11 0
Cond 00 } 1| OpCode }S Rn Rd Operand 2
I l ] L | B B

|—— Destination register
L—————— 1st operand register
Set conditlon codes

0 = do not alter condition codes
1 = set condition codes

Operation Code

0000 = AND - Ad:= Op1 AND Op2

0001 = EOR - Rd:= Op1 EOR Op2

0010 = SUB - Rd:= Opt - Op2

0011 = ASB - Ad:« Op2 - Opf

0100 = ADD - Rd= Opt + Op2

0101 « ADC - Rd= Opt + Op2 +C
0110 = S8C - Rd:= Op1 -Op2 + C

0111 = RSC - Rd=» Op2- Opt + C

1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Opt EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 « CMN - sat condition codes on Op1 + Op2
1100 = ORR - Rd:= Op1 OR Op2

1101 = MOV - Rd:= Op2

1110 = BIC - Rd:= Op1 AND NOT Op2

1111 = MVN - Rd:= NOT Op2

ImmedIlate Operand

1n O = operand 2 s a reqister 43 °

Shift Rm

[ JIIJ

2nd operand register

shift applied to Rm

1 = operand 2 is an immediate value
11 8 7 0

Rotate Imm

| 1 .

I
Unsigned 8 bit immediate vaiue

shift applied to Imm
Condition field

see section 6.1

The instruction is only executed if the condition is true. The various conditions are defined in section 6.1.

The instruction produces a result by performing a specified arithmetic or logical operation on one or two0
operands. The first operand is always a register (Rn). The second operand may be a shifted register (Rm)
or a rotated 8 bit immediate value (Imm) according to the value of the I bit in the instruction. The
condition codes in the PSR may be preserved or updated as a result of this instruction, according to the
value of the S bit in the instruction. Certain operations (T ST, TEQ, CMP, CMN) do not write the result to
Rd. They are used only to perform tests and to set the condition codes on the result, and therefore should
always have the S bit set. (The assembler treats TST, TEQ, CMP and CMN as TSTS, TEQS, CMPS and
CMNS by default.)

ARM Datasheet 17




'y

Chapter 6

6.3.1 Operations

The opcrations supported are:

Assembler
Mnemonic OpCode Action
AND 0000 Bit-wise logical AND of operands
EOR 0001 Bit-wise logical EOR of operands
suB 0010 Subtract operand 2 from operand 1
RSB 0011 Subtract operand 1 from operand 2
ADD 0100 Add operands
ADC ’ 0101 Add operands plus carry (PSR C flag)
SBC 0110 Subtract operand 2 from operand 1 plus carry
RSC 0111 ) Subtract operand 1 from operand 2 plus carry
TST 1000 as AND, but result is not written
TEQ 1001 as EOR, but result is not written
CMP 1010 as SUB, but result is not written
CMN 1011 as ADD, but result is not written
ORR 1100 Bit-wise logical OR of operands
MOV 1101 Move operand 2 (operand 1 is ignored)
BIC- 1110 Bit clear (bit-wise logical AND of operand 1
and NOT operand 2)
MVN 1111 Move NOT operand 2 (operand 1 is ignored)

6.3.2 PSR flags

The operations may be classified as logical or arithmetic. The logical operations (AND, EOR, TST, TEQ,
ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or operands to
produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the PSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift
operation is LSL #0), the Z flag will be set if and only if the result is all zeroes, and the N flag will be set
to the logical value of bit 31 of the result.

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat cach operand as a 32 bit
integer (either unsigned or 2's complement sxgncd the two are equivalent). If the S bit is set (and Rd is not
R15) the V flag in the PSR will be sct if an overflow occurs into bit 31 of the result; this may be ignored
if the operands were considered unsigned, but wams of a possible error if the operands were 2’s
complement signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z flag will be set if
and only if the result was zero, and the N flag will be sct to the value of bit 31 of the result (indicating a
negative result if the operands are considered to be 2’s complement signed).

6.3.3 Shifts

When the sccond operand is specified to be a shifted register, the operation of the barrel shifter is
controlled by the Shift field in the instruction. This field indicates the type of shift to be performed (logical
left or right, arithmetic right or rotate right). The amount by which the register should be shifted may be
contained in an immediate ficld in the instruction, or in the bottom byte of another register:

11 76 5 4 11 8 7 6 5 4
0 Rs 0 1
Shitt type Shift type
00 = [ogical left 00 = logical left
01 = logical right 01 - logical right
10 = arithmetic right 10 « arithmetic right
11 = rotate right 11 = rotate right
Shift amount ——————  Shift register
§ bit unsigned integer Shift amount specified in
bottom byte of Rs
18 ARM Datasheet

v . "

I b

- - - —‘ TNy PT v §“‘L- (.(_—w‘".‘ Mq wﬂ"“:vw@' RS NS TS A BT TR )5 " 55 ~sv i
DRENRTT T RS R N, N \'\‘:‘ “\ N 4\ Ay —\' MR YRS ~‘¢» =g ;& “aq‘l ; TR R sl T NS R PRVSEEIETTRA LY o2 t‘*ba i "'C‘?&,‘}:}
o ! T N . PR N PR

® " ® ® ® 4

{

|

rEeE®m®®®

m ® ™

m

}

Fyrd
{

L

|
LA B8 N B

™




“m

i

-

‘a

N TR ¥

- e W

. & W ¥ J

R S MRS R S RICANL A MESIS S et js KL NALES

Instruction Set

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any
value from O to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified
amount to a more significant position. The least significant bits of the result are filled with zeroes, and the
high bits of Rm which do not map into the result are discarded, except that the least significant discarded
bit becomed the shifter carry output which may be latched into the C bit of the PSR when the ALU
operation is in the logical class (see above). For example, the effect of LSL #5 is:

31 27 26 0

CaTIEi*/

contents of Rm

value of operand 2 600000

Note that LSL #0 is a special case, where the shifter carry out is the old value of the PSR C flag. The
contents of Rm are used directly as the second operand.

A logical shift right (LSR) is similar, but the contents of Rm are moved to less significant positions in the
result. LSR #5 has this effect:
31 5 4 0

contants of Rm

‘\_c_aﬂ out

000O00 value of operand 2

The form of the shift ficld which might be expected to correspond to LSR #0 is used to encode LSR #32,
which has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is
the same as logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into
LSL #0, and allow LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit
31 of Rm instead of zeroes. This preserves the sign in 2’s complement notation. For example, ASR #5:

31 30 5 4 0

ey ou

contents of Rm

value of operand 2

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of
Rm is again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is
therefore all ones or all zeroes, according to the value of bit 31 of Rm.

ARM Datasheet 19

i Ehae DRty Al T ESE s ; s -
R AC g SR AR S O SOOI S LKA LALT UM IR R RN IR S i 6 T Bl IS SRR & A S P2




Chapter 6

Rotate right (ROR) operations reuse the bits which ‘overshoot’ in a logical shift right opcration by
reintroducing them at the high end of the result, in place of the zeroes used to fill the high end in logical
right operations. For example, ROR #5:

31 5 4 0

contents of Rm

carry out

value of operand 2

The form of the shift ficld which might be expected to give ROR #0 is used to encode a special function
of the barrel shifter, rotate right extended (RRX). This is a rotate right by one bit position of the 33 bit
quantity formed by appending the PSR C flag to the most significant end of the contents of Rm:

31 . 1 0

contents of Rm

C carry
in\ out

value of operand 2

Register specified shift amount
Only the least significant byte of the contents of Rs is used to determine the shift amount.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of
the PSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction
specified shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shifting processes
described above:

*  LSL by 32 has result zero, carry out equal to bit 0 of Rm.
*  LSL by more than 32 has result zero, carry out zero.

* LSR by 32 has result zero, carry out equal to bit 31 of Rm.

* LSR by more than 32 has result zero, carry out zero.

* ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.
*  ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

* ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32;
- therefore repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

Note that the zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit
will cause the instruction to be a multiply or an undefined instruction.

20 ARM Datasheet

Y
e
Ry ‘\._‘ +

m
WS W W .

e . e N T AT TV I T € Tl e T YU § P - R T VAT T ™ R T TS R O W Yy e TR R T
T e T T R N {‘ rv TEVTIHTR “ R :l,{.‘i’:"l: ; ',"'"!";_"f;‘{‘&’%‘\ x \ PSR St B SR RSSO AR A
N . T e s K Y P R S A .

(B

(m |‘)\ (!‘\ ‘!‘\[ 3.3

(B

® ®

» ® o

n ®m & M
i R W O PO Y RWPESR FY B B P oa e

(,!’

"D

m ™




»

-~

'y

-

y

..)

‘

1}1*&4{:’;“‘,&9%‘14&47;.5}\4 ;'_y : ,-’ 5 %“

Instruction Set

6.3.4 Immediate operand rotates

The immediate operand rotate ficld is a 4 bit unsigned integer which specifics a shift operation on the 8 bit
immediate value. The immediate value is zero extended to 32 bits, and then subject to a rotate right by
twice the value in the rotate field. This enables many common constants to be gencrated, for example all
powers of 2. Another example is that the 8 bit constant may be aligned with the PSR flags (bits O, 1, and
26 to 31). All the flags can thereby be initialised in one TEQP instruction (see section 6.2.5).

6.3.5 Writing to R1S

When Rd is a register other than R15, the condition code flags in the PSR may be updated from the ALU
flags as described above. When Rd is R15 and the S flag in the instruction is set, the PSR is overwritten
by the corresponding bits in the ALU result, so bit 31 of the result goes to the N flag, bit 30 to the Z flag,
bit 29 to the C flag and bit 28 to the V flag. In user mode the other flags (I, F, M1, MO) are protected
from direct change, but in non-user modes these will also be affected, accepting copies of bits 27, 26, 1
and O of the result respectively.

When one of these instructions is used to change the processor mode (which is only possible in a non-user
mode), the following instruction should not access a banked register (R8-R14) during its first cycle. A no-
op should be inserted if the next instruction must access a banked register. Accesses to the unbanked
registers (RO-R7 and R15) are safe.

If the S flag is clear when Rd is R15, only the 24 PC bits of R15 will be written. Conversely, if the
instruction is of a type which does not normally produce a result (CMP, CMN, TST, TEQ) but Rd is R15
and the S bit is set, the result will be used in this case to update those PSR flags which are not protected
by virtue of the processor mode.

6.3.6 Using R15 as an operand

If R15 is used as an operand in a data processing instruction it can present different values depending on
which operand position it occupies. It will always contain the value of the PC. It may or may not contain
the values of the PSR flags as they were at the completion of the previous instruction.

When R15 appears in the Rm position it will give the value of the PC together with the PSR flags to the
barrel shifter. '

When R15 appears in either of the Rn or Rs positions it will give the value of the PC alone, with the PSR
bits replaced by zeroes.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the
shift amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the
shift amount, the PC will be 8 bytes ahead when used as Rs, and 12 bytes ahead when used as Rn or Rm.
6.3.7 Assembler syntax
* MOV MVN - single operand instructions
<opcode>{cond}{S} Rd,<Op2>
*  CMP,CMN,TEQ,TST - instructions which do not produce a result.
<opcode>{cond}{P} Rn,<Op2> »
*  AND.EOR,SUB,RSB,ADD,ADC,SBCRSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>
where <Op2> is Rm{,<shift>} or ,<#expression>

{cond) - two-character condition mnemonic, see section 6.1.

ARM Datasheet 21

At




«

L

Chapter 6

)

{S} - set condition codes if S present (implied for CMP, CMN, TEQ, TST).

{P} - make Rd = R15 in instructions where Rd is not specificd, otherwisc Rd will default to RO. (Used for
changing the PSR dircctly from the ALU result.)

Rd, Rn and Rm arc cxpressions evaluating to a register number.

If <#cxpression> is used, the assembler will attempt to generate a shifted immediate 8-bit ficld to match the
expression. If this is impossible, it will give an error.

bRk )

YU P YU Wewepay W Trarey o T’ et ey pu o e e wn s

<shift>.is <shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR.

(!\, .

(ASL is a synonym for LSL, the two assemble to the same code.)

6.3.8 Examples

ADDEQ R2,R4,RS ; 1f the Z flag is set make R2:=R4+R5

®m ™

TEQS R4, #3 ; test R4 for equality with 3
; (the S is in fact redundant as the
; assembler inserts it automatically)

1.\

SUB R4,R5,R7,LSR R2 ; logical right shift R7 by the number in
; the bottom byte of R2, subtract the result
; from RS, and put the answer into R4

; assume non-user mode here
TEQP R15, #0 ; Change to user mode and clear N,2,C,V,I,F
; NB R15 is here in the Rn position, so it
; comes without the PSR flags
MOVNV RO, RO : ; no-op to avoid mode change hazard
MOV PC,R14 ; return from subroutine (R14 is a banked register)

®m ™

MOVS PC,R14

; return from subroutine and restore the PSR

w ®

(]

(!}
=

(.

!

¥

22 ARM Datasheet

L

T TN T S TN S L T TR, “’l\‘é"* T LA
N R AT ‘,Z’.’\".‘“:"‘._\A\’Q}:. t\:*\'::f = Pﬁ‘ %"

TRRIESN



i W

¥

Instruction Set

6.4 Multiply and multiply-accumulate (MUL, MLA)

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0

- Cond 000000 AlS Rd Rn Rs 1001 Rm

TR

AUSA 4

| — { 11 I 1 1 ]
L__[ﬁ Operand registers

. .
Destination register
Set condition codes

0 = do not alter condition codes
1 = set condition codes

Accumulate bit
0 = multiply
1 = multiply and accumulate

Condition field

see saction 6.1

The instruction is only executed if the condition is true. The various conditions are defined in section 6.1.

The multiply and multiply-accumulate instructions use a 2 bit Booth's algorithm to perform integer
multiplication. They give the least significant 32 bits of the product of two 32 bit operands, and may be
used to synthesize higher precision multiplications.

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be sct to zero for
compatibility with possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD instruction in some
circumstances.

Both forms of the instruction work on operands which may be considered as signed (2's corﬁplemem) or
unsigned integers.

6.4.1 Operand restrictions

Due to the way the Booth’s algorithm has been implemented, certain combinations of operand registers
should be avoided. (The assembler will issue a warning if these restrictions are overlooked.)

The destination register (Rd) should not be the same as the Rm operand register, as Rd is used to hold
intermediate values and Rm is used repeatedly during the multiply. A MUL will give a zero result if
Rm=Rd, and a MLA will give a meaningless resuit. ’

The destination register (Rd) should also not be R15. R15 is protected from modification by these
instructions, so the instruction will have no effect, except that it will put meaningless values in the PSR
flags if the S bit is set.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register
when required.

6.4.2 PSR flags

Setting the PSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are
set correctly on the result (N is equal to bit 31 of the result, Z is set if and only if the result is zero), the V
flag is unaffected by the instruction (as for logical data processing instructions), and the C flag is set to a
meaningless value.

ARM Datasheet 23

gy .
EYINEDEY GA LB N B Mt S v b T P
AP 1’- L ARy .i,,“, ‘R ¥ ffﬁ‘ vz,}‘_; oy

R

X TREITE o
H PR Lxag 8t X 20 g SE gy el
A RAL IR St b R e S R

o R
koA g eaks




® ® @

Chapter 6

1y

6.4.3 Writing to R15

As mentioned above, R15 must not be used as the destination register (Rd). If it is so used, the instruction
will have no effect except possibly to scramble the PSR flags.

6.4.4 Using R15 as an operand

L)

R15 may be uscd as one or more of the opcrands, though the result will rarely be useful. When used as Rs
the PC bits will be used without the PSR flags, and the PC value will be 8 bytes on from the address of
the multiply instruction. When used as Rn, the PC bits will be used along with the PSR flags, and the PC
will again be 8 bits on from the address of the instruction. When used as Rm, the PC bits will be used
together with the PSR flags, but the PC will be the address of the instruction plus 12 bytes in this case.

k)

{

6.4.5 Assembler syntax

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} - two-character condition mnemonic, see section 6.1.
{S} - set condition codes if S present.

Rd, Rm, Rs and Rn are expressions evaluating to a register number.

(Rd must not be R15 and must not be the same as Rm.)

L L L

™
W URUERNE NN IO S DTN PN SR T NSRS W ey P e P

6.4.6 Examples

Ve
{
}

MUL R1,R2,R3 ; R1:=R2*R3

MLAEQS R1,R2,R3,R4 ; conditionally R1:=R2*R3+R4,

; setting condition codes

" m

The multiply instruction may be used to synthesize higher precision multiplications, for instance to multiply
two 32 bit integers and generate a 64 bit result:

mulé64
MOV al,A,LSR #16 ; al:= top half of A
MOV D,B,LSR #16 ; D := top half of B

BIC A,A,al,LSL #16 ; A := bottom half of A
BIC B,B,D,LSL #16 ; B := bottom half of B

[l

MUL C,A,B ; low section of result
MUL B,al,B ;) middle sections @
MUL A,D,A ;) of result
MUL D,al,D ; high section of result
ADDS A,B,A ; add middle sections —

H (couldn’t use MLA as we need C correct) B
ADDCS D, D, #&10000 ; carry from above add I
ADDS C,C,A,LSL #16 ; C is now bottom 32 bits of product
ADC D,D,A,LSR #16 ; D is top 32 bits

X

( A, B are registers containing the 32 bit integers; C, D are registers for the 64 bit result; al is a temporary
register. A and B are overwritten during the multiply)

ol

W W W -

24 ARM Datasheet

™ @

YERT FREP AN »%WWW F

T, -.,\\ “v\40..,‘"’ LIRS \.\1;~ ] *w "1"\"%




~u—-

¢« W w b

-

UTR TR

¢

—

Instruction Set

6.5 Single data transfer (LDR, STR)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

Cond ot |1]PlulBiW]|L Rn Rd Offset

R { ol |1 i

I— L
Source/Destination register

Base register

Load/Store bit

0 = Stors to memory
1 = Load from memory

Write-back bit

0 = no write-back
1 = write address into base

Byte/Word bit

0 = transfer word quantity
1 « transfer byte quantity

Up/Down bit

0 = down; subtract offset frombase
1 = up; add offset to base

Pre/Post indexing bit
0 = post; add offset after transfer
1 = pre; add offset belors transfer

immediate offset

1 O = offset is an immediate value 0

Immediate offset

! l 1
Unsigned 12 bit immediate offset
1 1 = offset Is a register 403 0
Shift Rm
L I
]
Offset register

shift applied to Rm
Condition field

see section 6.1

The instruction is only exccuted if the condition is true. The various conditions are defined in section 6.1.

The single data transfer instructions are used to load or store single bytes or words of data. The memory
address used in the transfer is calulated by adding an offset to or subtracting an offset from a base register.
The result of this calculation may be written back into the base register if ‘auto-indexing’ is required.

6.5.1 Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a
second register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from U=0)
the base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after
(post-indexed, P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
writter: back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed

ARM Datasheet 25




®m | @D

Chapter 6

addressing, the write back bit is redundant, since the old base valuc can be retained by sctting the offset to
zero. Therelore post-indexed data transfers always write back the modified base. The only use of the W bit
in a post-indexed data transfer is in non-user mode code, where setting the W bit forces the TRANS pin

to go LOW for the transfer, allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this pin.

L L

6.5.2 Shifted register offset

The 8 shift control bits arc described in the data processing instructions
specified shift amounts arc not available in this instruction class.

LA

(section 6.2.3), but the register

6.5.3 Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM register and
memory.

® (M

A byte load (LDRB) expects the data on bits 0 to 7 if the supplied address is on a word boundary, on bits
8 to 15 if it is a word address plus one byte, and so on. The selected byte is placed in the bottom 8 bits of
the destination register, and the remaining bits of the register arc filled with zerocs.

™

A byte store (STRB) repeats the bottom 8 bits of the source register four times across the data bus. The
external memory system should activate the appropriate byte subsystem to store the data (sec chapter 7).

A word load (LDR) should generate a word aligned address. An address offset from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. External

hardware could perform a double access to memory to allow non-aligned word loads, but existing systems
do not support this.

® ® @
LR

A word store (STR) should generate a word aligned address. The data presented to the data bus are not

affccted if the address is not word aligned, so if support werc required for non-aligned stores external
hardware would have to switch bytes around on the bus.

6.5.4 Use of R15

These instructions will never cause the PSR to be modified, even when Rd or Rn is R15.

m

If R15 is specificd as the base register (Rn), the PC is used without the PSR flags. When using the PC as

the base register one must remember that it contains an address 8 bytes on from the address of the current
instruction.

m

If R15 is specified as the register offset (Rm), the value presented will be the PC together with the PSR.

|

When R15 is the source register (Rd) of a register store (STR) instruction, the value stored will be the PC
together with the PSR. The stored value of the PC will be 12 bytes on from the address of the instruction.
A load register (LDR) with R15 as Rd will change only the PC, and the PSR will be unchanged.

L)

6.5.5 Address exceptions

S

If the address used for the transfer (ie the unmodified contents of the base register for post-indexed
addressing, or the base modified by the offset for pre-indexed addressing) has a logic one in any of the bits
26 to 31, the transfer will not take place and the address exception rap will be taken.

MK,

Note that it is only the address actually used for the transfer which is checked. A base containing an
address outside the legal range may be used in a pre-indexed transfer if the offset brings the address within
the legal range, and likewise a base within the legal range may be modified by post-indexing to outside the
legal range without causing an address exception.

m m

26 ARM Datasheet

"

AR TR LA PUEVEN 'K,‘t'*"'c‘v‘::\ e e B e An R ! :tw,-,‘:-_..w-{»-iiu:"w‘:',‘:«\-\_1:-.‘ S M #ires e S R Ity A RS IE I Al St S S R
P LU N R KA PRI TS A R T s AR R



@ W W - @

-

Instruction Set

6.5.6 Data Aborts

A transfer to or from a legal address may still cause problems for a memory management system. For
instance, in a system which uscs virtual memory the required data may be absent from main memory. The
memory manager can signal a problem by taking the processor ABORT pin HIGH, whereupon the data
transfer instruction will be prevented from changing the processor state and the Data Abort trap will be
taken. It is up to the system software to resclve thc cause of the problem, then the instruction can be
restarted and the original program continued.

6.5.7 Assembler syntax
<LDR|STR>{cond}{B}{T} Rd,<Address>

LDR - load from mcmory into a register.

STR - store from a register into memory.

{cond} - two-character condition mnemonic, see section 6.1.
{B} - if B is present then byte transfer, otherwise word transfer.

{T} - if T is present the W bit will be set in a post-indexed instruction, causing the TRANS pin to go
LOW for the transfer cycle. T is not allowed when a pre-indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.
<Address> can be:
*  An expression which generates an address:
<expression>

The assembler will attempt to generate an instruction using the PC as a base and a corrected
immediate offsct to address the location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range, an error will be generated.

* A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted by <shift>.
* A post-indexed addressing specification:

{Rn],<#expression> offset of <expression> bytes

[Rn},{+/-}Rm{,<shift>} offsct of +/- contents of index register, shifted as by <shift>.

Rn and Rm are expressions evaluating to a valid register number. NOTE if Rn is R15 then the assembler
will subtract 8 from the offset value to allow for ARM pipelining.

<shift> is a general shift operation (see section on data processing instructions) but note that the shift
amount may not be specified by a register.

{1} write back the base register (set the W bit) if ! is present.

ARM Datasheet 27




m

Chapter 6

- m

6.5.8 Examples

il

STR R1, [BASE, INDEX]! ; store R1 at BASE+INDEX (both of which are
registers) and write back address to BASE

~

STR R1, [BASE], INDEX ; store Rl at BASE and writeback
; BASE+INDEX to BASE

m

LDR R1, [{BASE, #16) ; load Rl from contents of BASE+16.

; Don’t write back

£

LDR R1, [BASE, INDEX,LSL #2] ; load Rl from contents of

; BASE+INDEX*4

ﬂ!\.

LDREQB R1, [BASE, #5] ; conditionally load byte at BASE+5 into

; Rl bits 0 to 7, filling bits 8 to 31 with zeroces

et
1
v

STR R1,PLACE ; generate PC relative offset to address PLACE

PLACE ‘

nmmm o ®
:" o Lo (‘
- TN PRt pu —remag e ey v =

@

" m
|

)
VRN M WEBU W ey vy

fm

n
W YU W W T P —

!

28 ARM Datasheet

m

T R e T e SR T e R TR I B

RS 43
AR EAd



‘&

@ w

T
co RO RLT N

Instruction Set

6.6 Block data transfer (LDM, STM)

31 28 27 25 24 23 22 21 20 19 16 15 0
Cond 100 |PJU|S§W]L Rn Register list
T -
Base register
Load/Store bit

0 « Store to memory
1 = Load from memory

Write-back bit

0 = no write-back
1 = write address into base

PSR & force user bit

0 = do not load PSR or force user mode
1 = load PSR or force user mode

Up/Down bit

0 = down; subtract offset from base
1 = up; add offset 10 base

Pre/Post indexing bit
0 = post; add offset after transler
1 = pre; add offset before transfer

Condition field

see section 6.1

The instruction is only executed if the condition is true. The various conditions are defined in section 6.1.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or
down memory, and arc very cfficient instructions for saving or restoring context, or for moving large
blocks of data around main memory.

6.6.1 The register list

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can
also transfer to and from the user bank, sce below). The register list is a 16 bit field in the instruction, with
each bit corresponding to a register. A 1 in bit 0 of the register ficld will cause RO to be transferred, a 0
will cause it not to be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subsct of the registers, or all the registers, may be specificd. The only restriction is that the register list
should not be empty.

6.6.2 Addressing modes

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the
up/down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will
always be transferred last. The lowest register also gets transferred to/from the lowest memory address. By
way of illustration, consider the transfer of R1, RS and R7 in the case where Rn=1000H and write back of
the modified base is required (W=1). The following figures show the sequence of register transfers, the
addresses used, and the value of Rn after the instruction has completed.

(In all cases, had write back of the modified base not been required (W=0), Rn would have retained its
initial value of 1000H unless it was also in the transfer list of a load multiple register instruction, when it
would have been overwritten with the loaded value.)

ARM Datasheet 29

> T Y Wi A e Rsemicim b g U SR A g i
O I P € AN 2R 35 EE ok o Ry ég»_',&_, (520 M Mgtk B4

T g AL ATE R el o Ve b T T AR N g i g 2A s F ) T i ot
ot Reai il S el BE R R N g R B S o e LB A T T R A A A B St
i R ANELLY Tt R -‘:,- $riib s L A‘-..:’ﬁ'A 215

;

£ 44 ;? r




Chapter 6

Post-increment addressing

100CH 100CH
Rp—> : 1000H R1 1000H
OFF4H : OFF4H @ \
M (2) T
o
100CH Rn—> 100CH L
@
R7 !
RS RS .
R1 1000H R1 1000H @ E
€
OFF4H OFF4H ’ {
3 : {4) e, ~r
Pre-increment addressing E
€
100CH 100CH
@
R1
Rn—> 1000H 1000H
@
OFF4H OFF4H é i
o)) (2)
&
R
100CH Rn—> | - R7 100CH - _r
R5 R5
R1 » -
1000H 1000H i
o
OFF4H OFF4H [
3) @ & x
-
30 ARM Datasheet —
e

S TR R S R N I o = T R R T A T AR T

TSN o A e R ke b T
B SR RALAC ?tﬁ‘.‘*‘f‘:‘f"“::f\;‘% PR AR LR Tt L 2 st B

P



-

3/

W

Y

Post-decrement addressing

Rn—>

(1)

R5

R1

3

Pre-decrement addressing

Rn—>

)

R5

R1

3

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

ARM Datasheet

Rn—>

Rn—>

R1

(2

R7

R5

R1

(4)

R1

2

R7

R5

R1

(4

Instruction Set

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

31




Chapter 6

6.6.3 Transfer of R15

Whenever R15 is stored to memory, the value transferred is the PC together with the PSR flags. The stored
value of the PC will be 12 bytes on from the address of the STM instruction.

If R1S is in the transfer list of a load multiple (LDM) instruction the PC is overwritten, and the cffect on
the PSR is controlled by the S bit. If the S bit is O the PSR is preserved unchanged, but if the S bit is 1
the PSR will be overwritten by the corresponding bits of the loaded value. In user mode, however, the I, F,
MO and M1 bits are protected from change whatever the value of the S bit. The mode at the start of the
instruction determines whether these bits are protected, and the supervisor may return to the user program,
reenabling interrupts and restoring user mode with one LDM instruction.

6.6.4 Forcing transfer of the user bank

For STM instructions the S bit is redundant as the PSR is always stored with the PC whenever R15 is in
the transfer list. In user mode programs the S bit is ignored, but in other modes it has a second
interpretation. S=1 used to force transfers to take values from the user register bank instead of from the
current register bank. This is useful for saving the user state on process switches. Note that when it is so
used, write back of the base will also be to the user bank, though the base will be fetched from the current
bank. Therefore don’t use write back when forcing user bank.

In LDM instructions the S bit is redundant if R15 is not in the transfer list, and again in user modc
programs it is ignored in this case. In non-user mode programs where R15 is not in the transfer list, S=1 is
used to force loaded values to go to the user registers instead of the current register bank. When so used,
care must be taken not to read from a banked register during the following cycle - if in doubt insert a no-
op. Again don't use write back when forcing user bank transfer.

6.6.5 Use of R15 as the base

When the base is the PC, the PSR bits will be used to form the address as well, so unless all interrupts are
enabled and all flags are zero an address exception will occur. Also, write back is never allowed when the
basc is the PC (sctting the W bit will have no effect).

6.6.6 Inclusion of the base in the register list

When writcback is specified, the basc is written back at the end of the second cycle of the instruction.
During a STM, the first register is written out at the start of the second cycle. A STM which includes
storing the base, with the base as the first register to be stored, will therefore store the unchanged value,
whereas with the base second or later in the transfer order, will store the modified value. An LDM will
always overwrite the updated base if the basc is in the list.

6.6.7 Address exceptions

When the address of the first transfer falls outside the legal address space (ie has a 1 somewhere in bits 26
to 31), an address exception trap will be taken. The instruction will first complete in the usual number of
cyles, though an STM will be prevented from writing to memory. The processor state will be the same as
if a data abort had occurred on the first transfer cycle (see next section).

Only the address of the first transfer is checked in this way; if subsequent addresses over- or under-flow
into illegal address space they will be truncated to 26 bits but will not cause an address exception trap.

6.6.8 Data Aborts

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the ABORT pin HIGH. This can happen on any transfer
during a multiple register load or store, and must be recoverable if ARM is to be used in a virtual memory
system.

32 ARM Datasheet

(!:\(!g\

LN, L N

(®

el

.

LI

L T N S Y TR TG PO AN ]
¥ ! { . ! ;

m

R L T R A L A e T e PETE b A S ae e Reei 2Lk R st it M ahe e e et Sahnie ATl IR et BT GaNcH S TR
- s UM PR TR = R T B Tt T T SV AR SR L R Y M
: T T ARRLL A e e PP e (O LR SRR

e,

v.z 1!,: {f‘"\\i" G




d>

Instruction Set

Aborts during STM instructions

If the abort occurs during a storc multiple instruction, ARM takes little action until the instruction
completes, whercupon it enters the data abort trap. The memory manager is responsible for preventing
crroncous writes to the memory. The only change to the internal state of the processor will be the
modification of the base register if write-back was specified, and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions

When ARM detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to cnsure that recovery is possible. '

*  Overwriting of registers stops when the abort happens. The aborting load will not take place, nor will
the preceding one, but registers two or more positions ahead of the abort (if any) will be loaded.
(This guarantees that the PC will be preserved, since it is always the last register to be overwritien.)

The basc register is restored, to its modified value if write-back was requested. This ensures
recoverability in the casc where the basc register is also in the transfer list, and may have been
overwritten before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any
base modification (and resolve the cause of the abort) before restarting the instruction.

6.6.9 Assembler syntax
<LDM|STM>{cond}<FD|ED|FA|EA{IAIB|DA|DB> Rn{!},<Rlist>{*}

{cond]} - two character condition mnemonic, see section 6.1. i
Rn is an expression evaluating to a valid register number.,

<Rlist> can be either a list of registers and register ranges enclosed in {} (eg {RO,R2-R7,R10)), or an
expression evaluating to the 16 bit opcrand. !

{1} if present requests writc-back (W=1), otherwise W=0.

{~} if present sct S bit to load the PSR with the PC, or force transfer of user bank when in non-user mode.

Addressing mode names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalences between the names and
the values of the bits in the instruction are:

name stack other L bit P bit U bit
pre-increment load LDMED LDMIB 1 1 1
post-increment load LDMFD LDMIA 1 Q 1
pre-decrement load LDMEA LDMDB 1 1 0
post-decrement load LDMFA LDMDA 1 0] 0
pre-increment store STMFA STMIB 0 1 1
post-increment store STMEA STMIA 0 0 1
pre—-decrement store STMFD STMDB 0 1 o]
post-decrement store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required.
The F and E refer to a "full” or "empty” stack, i.e. whether a pre-index has to be done (full) before storing
to the stack. The A and D refer to whether the stack is ascending or descending. If ascending, a STM will

ARM Datasheet 33




Chapter 6

= ™

go up and LDM down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM arc not being used for stacks and simply mean Increment
After, Increment Before, Decrement After, Decrement Before.

ek

6.6.10 Examples

(!_l\

LDMED SP!, {RO,R1,R2} ; unstack 3 registefs

(!

STMIA BASE, {RO-R15]} ; .save all registers

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the
calling routine:

\
\

(B

STMED SpP!, {RO~R3,R14} ; save RO to R3 to use as workspace
;  and R14 for returning

w

BL somewhere ; this nested call will overwrite R14

LDMED SP!, {RO-R3,R15}" ; restore workspace and return
. (also restoring PSR flags)

o

-

o

o

1(!)

"

&

34 ARM Datasheet

14

7

,;{. ,¥ 1:"“‘ i'&*: :E




N 3

—~—

—~—

-~ ¢ W &

Instruction Set

6.7 Software interrupt

31 28 27 24 23 0

Cond 1111 Comment field (ignored by ARM)

1

Condition tield

see section 6.1

The instruction is only exccuted if the condition is true. The various conditions are defined in section 6.1.

The software interrupt instruction is used to enter supervisor mode in a controlled manner. The instruction
causes the software interrupt trap to be taken, which effects the mode change but forces the PC to a fixed
value (08H). If this address is suitably protected (by external memory management hardware) from
modification by the user, a fully protected operating system may be constructed.

6.7.1 Return from the supervisor

The PC and PSR are saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to
point to the word after the SWI instruction. MOVS R15R14_svc will rctum to the user program, restore
the user PSR and return the processor 1o user mode.

Note that the link mechanism is not re-cnirant, so if the supervisor code wishes to use software interrupts
within itself it must first save a copy of the rcturn address.

6.7.2 Comment field

The bottom 24 bits of the instruction are ignored by ARM, and may be used to communicate information
to the supervisor code. For instance, the supervisor may look at this field and use it to index into an array
of entry points for routines which perform the various supervisor functions.

6.7.3 Assembler syntax

SWI{cond} <expression>

{cond] - two character condition mnemonic, sce section 6.1.

<expression> is evaluated and placed in the comment field (which is ignored by ARM).

ARM Datasheet 35







Instruction Set
6.8 Co-Processor data operations

31 28 27 - 24 23 20 19 16 15 12 11 8 7 5 4 3 0

Cond 1110 CP Opc CRn CRd CP# cP 10 CRm

L L I JI—J

Co-Processor operand register
Co-Processor information
Co-Processor number
Co-Processor destination register
Co-Processor operand register
Co-Processor operation code
Condition field

see saction 6.1

T

The instruction is only executed if the condition is true. The various conditions are defined in section 6.1.

This class of instruction is used to tell a Co-Processor to perform some internal operation. No result is
communicated back to ARM, and ARM will not wait for the operation 10 complete. The Co-Processor
could contain a queue of such instructions awaiting execution, and their execution can overlap other ARM
activity allowing the Co-Processor and ARM to perform independent tasks in parallel.

6.8.1 The Co-Processor fields

Only bit 4 and bits 24 to 31 are significant to ‘ARM; the remaining bits are used by Co-Processors. The
above ficld names arc used by convention, and particular Co-Processors may redefine the use of all fields
except CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to 15)
. for each Co-Processor, and a Co-Processor will ignore any instruction which does not contain its number in

the CP# field.

The conventional interpretation of the instruction is that the Co-Processor should perform an operation
specified in the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place

the result in CRd.

6.8.2 Assembler syntax

CDP{cond} CP#,<expression1>,CRd,CRn,CRm{,<expression2>}

{cond} - two character condition mnemonic, see section 6.1.

CP# - the unique number of the required Co-Processor.

<expressionl> - evaluated to a constant and placed in the CP Opc field.

CRd, CRn and CRm are expressions evaluating to a valid Co-Processor register number.

<expression2> - where present is evaluated to a constant and placed in the CP field.

ARM Datasheet 37




Chapter 6

6.8.3 Examples

cpp 1,10,CR1,CR2,CR3 ; request Co-Proc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1

CDPEQ 2,5,CR1,CR2,CR3,2 ; if Z flag is set request Co-Proc 2 to do

; operation 5 (type 2) on CR2 and CR3,
;  and put the result in CR1

"M

\

m (W

me®

""" ~, 1il- ‘w-—r-—-m-—-—-n-vm—-.-u-

m

o)

¥

L]

)
s

!

)
!
——

{F
™

)
[N S, ey w—

m

At

38 ARM Datasheet

'-1’:':"'".‘7\3:"?-”‘-"4? PASEARY
BRI Ve e KRER2

_ AR L TGO S S S S SN WL R E b
7 ISR VRT3 '_,;x\\.?r\.x“:\'?_ i Bopp et ’.'j".'»“ “Lf?“‘:i- ‘?‘"‘:‘3«. ARS

TR T,



