PR
{

N

@ W w

v @ W

wz&,mgjz whﬁ‘) I \.)

e

. Instruction Set
6.9 Co-Processor data transfers

31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 0

Cond 110 §PJUIN|W]L Rn CRd CPi# Offset

{ | { | L I] J

L— Unsigned 8 bit Immediate offset
—— Co-Processor number

Base register
Load/Store bit

0 « Store to memory
1 = Load from memory

Write-back bit
Q = no write-back
1 = write address into base

Transfer length
Up/Down bit

0 = down; subtract offset from base
1 = up; add offset to base

Pre/Post indexing bit
0 = post; add offset after transfer
1 = pre; add offset belors transfer

Condition field

see section 6.1

The instruction is only executed if the condition is true. The various conditions are defined in section 6.1.

This class of instruction is used to transfer one or more words of data between the Co-Processor and main
memory. ARM is responsible for supplying the memory address, and the Co-Processor supplies or accepts
the data and controls the number of words transferred.

6.9.1 The Co-Processor fields

The CP# field is used to identify the Co-Processor which is required to supply or accept the data, and a
Co-Processor will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the Co-Processor which may be interpreted in different
ways by different Co-Processors, but by convention CRd is the register to be transferred (or the first
register where more than one is to be transferred), and the N bit is used to choose one of two transfer
length options. For instance N=0 could select the transier of a single register, and N=1 could select the
transfer of all the registers for context switching.

6.9.2 Addressing modes

ARM is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however,
that the immediate offsets are 8 bits and specify word offsets here, whereas they are 12 bits and specify
byte offsets for single data transfers.

An 8 bit unsigned immediate offset is scaled to words (ie shifted left 2 bits) and added to (U=1) or
subtracted from (U=0) a base register (Rn), either before (P=1) or after (P=0) the base is used as the
transfer address. The modified base value may be overwritten back into the base register (if W=1 when the
address is pre-indexed, or by default if the address is post-indexed), or the old value of the base may be
preserved (W=0 when the address is pre-indexed, or an offset of zero when the address is post-indexed).

ARM Datasheet 39

Co-Processor source/destination register

ST T SO "wv-w*'ﬁ'*ﬂ\"r"v‘"rvr‘\wv a*"\ﬂ‘vrm‘w‘ 2% ,‘3{"},"‘{'*“‘&"-" ; "“*’""" Y 7 _ﬁés;‘i. I,‘QE‘.}' ;L ’}, 3 't-
: Rl e P \..»N_» R RN [l

Chapter 6

The valuc of the base register, modificd by the offsct in a pre-indexed instruction, is used as the address for
the transfer of the first word. The second word (if more than onc is transferred) will go to or come from an
address onc word (4 bytes) higher than the first transfer, and the address will be incremented by one word
for cach subsequent transfer,

6.9.3 Use of R15

If Rn is R135, the value used will be the PC without the PSR flags, with the PC being the address of this
instruction plus 8 bytes.

6.9.4 Forcing address translation

The W bit may be used in non-user mode programs (when the post-indexed addressing form is used) to
force the TRANS pin LOW for the transfer cycle, allowing the operating system to generate user addresses
when a suitable memory management system is present.

6.9.5 Address exceptions

If the address used for the first transfer is illegal the address exception mechanism will be invoked.
Instructions which transfer multiple words will only trap if the first address is illegal; subsequent addresses
will wrap around inside the 26 bit address space.

6.9.6 Data aborts

If the address is legal but the memory manager generates an abort the data abort trap will be taken, The
writcback of the modified base will take place, but all other processor state will be preserved. The Co-
Processor is partly responsible for ensuring restartability, and must either detect the abort or ensure that any
actions consequent from this instruction can be repeated when the instruction is retried after the cause of
the abort has been resolved.

6.9.7 Assembler syntax

<LDC|STC>{cond}{L} CP#,CRd,<Address>
"LDC - load from memory to Co-Processor (L=1).

STC - store from Co-Processor to memory (L=0).

{L} - when present perform long transfer (N=1), othcrwise perform short transfer (N=0).

{cond) - two character condition mnemonic, see section 6.1.

CP# - the unique number of the required Co-Processor.

CRd is an expression evaluating to a valid Co-Processor register number.

<Address> can be:

* An expression which generates an address:
<expression>

The assembler will attempt to generate an instruction using the PC as a base and.a corrected
immediate offset to address the location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range, an error will be generated.

* A pre-indexed addressing specification:
[Rn] offset of zero

{Rn,<#expression>]{!} offset of <expression> bytes

40 ARM Datasheet

m ® ®

V¥

(

n ™

(M

mm e

[

momem

|
f

t

m

(’ |

™, m

Instruction Set

4
* A post-indexed addressing specification:
[Rn],<#expression> offsct of <expression> bytes

Rn is an expression evaluating to a valid ARM register number. NOTE if Rn is R15 then the assembler

will subtract 8 from the offset value to allow for ARM pipelining.

{1} write back the base register (sct the W bit) if ! is present.

6.9.8 Examples)
~ LDC 1,CR2,table : load CR2 of Co-~Proc 1 from address table, ’
= ; using a PC relative address.

B STCEQL 2,CR3, [R5,#24]! ; conditionally store CR3 of Co-Proc 2 into

™ ; an address 24 bytes up from R5, write this

T : address back into R5, and use long transfer
; option (probably to store multiple words)

u

Note that though the address offsct is expressed in bytes, the instruction offset field is in words. The

assembler will adjust the offset appropriately.

y

ARM Datasheet 41

SPGB FRCIAL p £ib

A RIS g $h 2 Eakndlit oy

Chapter 6

6.10 Co-Processor register transfers

(1

(e

(1)

(

R

(

31 28 27 24 23 19 20 1 16 15 12 11 8 7 S 43 0
Cond 1110 CPOpc|L CRn Rd CP# CcP 1 CRm
! | R L | I L | | J
1

Co-Processor operand register
Co-Processor information
Co-Processor number

ARM source/destination register

Load/Store bit

0 = Store to Co-Processor
1 = Load from Co-Processor

Co-Processor operation code
Condition field

see section 6.1

The instruction is only executed if the condition is true. The various conditions are defined in scction 6.1.

This class of instruction is used to communicate information directly between ARM and a Co-Processor.
An example of an MCR instruction would be a FIX of a floating point value held in a Co-Processor, where
the {loating point number is converted into a 32 bit integer within the Co-Processor, and the result is then
transferred to an ARM register. A FLOAT of a 32 bit value in an ARM register into a floating point value
within the Co-Processor illustrates the use of MRC.

An important use of this instruction is to communicate control information directly from the Co-Processor
into the ARM PSR flags. As an example, the result of a comparison of two floating point values within a
Co-Processor can be moved to the PSR to control the subsequent flow of execution.

6.10.1 The Co-Processor fields

The CP# field is used, as for all Co-Processor instructions, to specify which Co-Processor is being called
upon to respond.

The CP Opc, CRn, CP and CRm fields arc used only by the Co-Processor, and the interpretation presented
here is derived from convention only. Other interpretations are allowed where the Co-Processor
functionality is incompatible with this one. The conventional interpretation is that the CP Opc and CP fields
specify the operation the Co-Processor is required to perform, CRn is the Co-Processor register which is the
source or destination of the transferred information, and CRm is a second Co-Processor register which may
be involved in some way which depends on the particular operation specificd.

6.10.2 Transfers to R15

When a Co-Processor register transfer to ARM has R1S as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred
word are ignored, and the PC and other PSR flags are unaffected by the transfer.

6.10.3 Transfers from R15

A Co-Processor register transfer from ARM with R15 as the source register will store the PC together with
the PSR flags.

42 ARM Datasheet

Va7

D O e N S e A A I TR S DRI e s o
[A LA NS - N - - N . D

® | W m

Co-Processor source/destination register

m

mme

»

o

m ® W (r) (L'i L) (")
Y g p— Gy — Sy Sy S y————

N [

tg)

'’

(¥

Soms

Instruction Set

6.10.4 Assembler syntax
<MCR]MRC>{c0nd} CP#,<expressionl>,Rd,CRn,CRm{,expression2>
M&(’ move from Co-Proccssor to ARM register (L=1).
RC - movc from ARM register to Co-Processor (L=0).
{cond} - two character condition mnemonic, sce section 6.1.
CP# - the unique number of the required Co-Processor.
<expression1> - evaluated to a constant and placed in the CP Opc field.
Rd is an expression evaluating to a valid ARM register number.
CRn and CRm are expressions evaluating to a valid Co-Processor register number.

<expression2> - where present is evaluated to a constant and placed in the CP ficld.

6.10.5 Examples

MCR 2,5,R3,CR5,CRé6 ; request Co-Proc 2 to perform operation 5
; on CRS and CR6, and transfer the (single
;32 bit word) result back to R3

MRCEQ 3,9,R3,CR5,CR6,2 ; conditionally request Co-Proc 2 to perform
; operation 9 (type 2) on CR5 and CR6, and
; transfer the result back to R3

ARM Datasheet 43

Chapter 6

6.11 Undefined instructions

31 28 27 24 23 8 4 3 0
Cond 0001 XXXXXXXXXXXXXXXX Txx1 XXXX €
31 28 27 25 24 5 43 0 -
Cond 011 XXXXXXXXXXXXXXXXXXXX 1 XXXX @
The instruction is only exccuted if the condition is true. The various conditions are defined in section 6.1. @

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering these instructions to any Co-Processors
which may be present, and all Co-Processors must refuse to accept them by letting CPA float HIGH.

6.11.1 Assembler syntax

At present the assembler has no mnemonics for generating these instructions. If they arc adopted in the
future for some specificd use, suitable mnemonics will be added to the assembler. Until such time, these

instructions should not be uscd.

44

ARM Datasheet

NP AN ?‘ ‘L:hr \\ﬂ«
«;: L3 N - A

A e o N T £ T
R TN RO LML RN f»ui ‘”1- g

BRI

e

I

1
TeY vy

m m

™

3

1

Ll

m o

|
I

!

W OWnE W IR TN VUSRS W TR BT NSO DN Wewen e e

m ™ m

v

wry G

-

&

‘d

Instruction Set

6.12 Instruction set summary

W

v W w w W W

N %4

31 28 77 26 25 24 23 22 2120 19 16 15 12 11 8 7 5 4 3) .
Cond 00 [I] OpCode |S Rn Rd Operand 2 Data Processing
Cond 000000 AlS Rd Rn Rs 1001 Rm Multiply
Cond 0001 XXXXXXXXXXXXXXXX 1xx1 XXXX Undefined
Cond o1 {I|PJUiBIW]L Rn Rd offset Single Data Transfer
Cond 011 XXAXXXXXXXXXXXXXXXKX 1 XXXX Undefined
Cond | 100 [Pfuls|w|L Rn Register list Block Transfer
Cond 101 {L offset Branch
Cond 110 JPluIN|w|L Rn CRd CP# offset Co-Proc Data Transfer
Cond 1110 CP Opc CRn CRd cP# cP |o CRm Co-Proc Data Op
Cond 1110 "JCP Opc|L CRn Rd CP# cP |1 CRm Co-Proc Register Transfer
Cond 111 ignored by ARM Software Interrupt

V oJ e

(Note that some instruction codes are not defined but do not cause the Undefined instruction trap to be
taken, for instance a Multiply instruction with bit 5 or bit 6 changed to a 1. These instructions should be
avoided, as their action may change in future ARM implementations.)

W W

e

~—

» b

ARM Datasheet 45

€

N0 N> M SUREE ST | RSO AN ity S £ S S U H
B R PR T e T s ey

Chapter 6
6.13 Instruction set examples -
The following cxamples show ways in which the basic ARM instructions can combine to give cfficient G;

code. None of these methods saves a great deal of execution time (although thcy may save some), mostly -
they just save code.

6.13.1 Using the conditional instructions 6
(1) using conditionals for logical OR

CMP Rn,#p ;IF Rn=p OR Rm=q THEN GOTO Label
BEQ Label

CMP Rm, #g T
BEQ Label L=

can be replaced by

,,
CMP Rn, #p !_
CMPNE Rm, #q ;if condition not satisified try other test
BEQ Label

(2) absolute value Q
TEQ Rn, #0 ;test sign
RSBMI Rn,Rn, #0 ;and 2’'s complement if necessary Cij

(3) multiplication by 4, 5 or 6 (run time)

MOV Rc,Ra,LSL #2 ;multiply by 4
cMp Rb, #5 ;test value
ADDCS Rc¢,Rc,Ra ;complete multiply by S

E:

ADDHI Rc,Rc,Ra ;complete multiply by 6

J

(4) combining discrete and range tests

CMPNE Rc, #" "-1 ;range test
MOVLS Rc, #"." ;IF Re<=" " OR Rc=CHR$127
;THEN Rci="

TEQ Rc, #127 ;discrete test QE; .

(5) division and remainder

;enter with numbers in Ra and Rb -
MOV Rent, #1 ;bit to control the division [—/Iﬁf €E~

Divl CMP Rb, #£80000000 ;move Rb until greater than Ra | 7
CMPCC Rb,Ra : Kj
MOVCC Rb,Rb,ASL #1)/ p/% -

MOVCC Rent,Rent, ASL #1

U VU U U

BCC Divl ; 5

MOV Rc,#0 ‘ é (/l/ //}) Z } el l
Div2 CMP Ra,Rb ;test for possible subtraction : !Ef !

SUBCS Ra,Ra,Rb ;subtract if ok ; N ,c(ﬂJ

ADDCS Rc,Rc,Rent ;put relevant bit into result ' /

MOVS Rent,Rcnt,LSR #1;shift control bit '4'5‘[/ @f;//] Iy e,. I

MOVNE Rb,Rb,LSR #1 ;halve unless finished i /ﬂ F

BNE Div2 i , {
;divide result in Rc ' ; =
;remainder in Ra . | E"J

6.13.2 Pseudo random binary sequence generator

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on
shift generators with exclusive or feedback rather like a cyclic redundancy check generator. Unfortunately
the sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2/32-1 | S
cycles before repetition). Therefore BBC Basic uses a 33 bit register with taps at bits 33 and 20. The basic

(__.<

46 ARM Datasheet —

WWW{ F‘\,mw :, -(\1; ﬂi‘ E Es .?

hEL ;n“rr. 0

=/

[y

AR

Instruction Set

algorithm is newbit:=bit33 cor bit20, shift left the 33 bit number and put in newbit at the bottom. Then do
this for all the ncwbits needed i.c. 32 of them. Luckily this can all be done in 58 cycles:

;enter with seed in Ra (32 bits),Rb (1 bit in Rb lsb)

;uses Rc

TST Rb,Rb, LSR #1 ;top bit into carry
MOVS Rc,Ra,RRX ;33 bit rotate right
ADC Rb, Rb, Rb ;jcarry into lsb of Rb

ECR Rc,Re,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc, LSR#20 ; (similarly involved!)
;jnew seed in Ra, Rb as before .

6.13.3 Multiplication by constant using the barrel shifter
(1) Multiplication by 2n (1,2,4,8,16,32..)
MOV Ra,Ra,LSL #n
(2) Multiplication by 2”n+1 (3,5,9,17..)
ADD Ra,Ra,Ra,LSL #n
(3) Multiplication by 2*n-1 (3,7,15..)
RSB Ra,Ra,Ra,LSL #n
(4) Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ;multiply by 3
MOV Ra,Ra,LSL #1 ;and then by 2

(5) Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL #2 ;multiply by S
ADD Ra,Rc,Ra,LSL #1 ;multiply by 2 and add in next digit

(6) General recursive method for Rb := Ra*C, C a constant:

(a) If C even, say C = 2°n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb, LSL #n

(b) If C MOD 4 = 1, say C = 2”"n*D+1, D odd, n>l:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n

(c) If C MOD 4 = 3, say C = 2"n*D-1, D odd, n>l:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb, LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done
by:
RSB Rb,Ra,Ra,LSL #2 ;multiply by 3
RSB Rb,Ra,Rb,LSL #2 ;multiply by 4#3-1 = 11
ADD Rb,Ra,Rb,LSL #2 ;multiply by 4*11+1 = 45
rather than by:

ADD Rb,Ra,Ra,LSL #3 ;multiply by 9
ADD Rb,Rb,Rb,LSL #2 ;multiply by $*9 = 45

ARM Datasheet 47

s
"

DAL AR BT

S

Chapter 6

(%)

6.13.4 Loading a word from an unknown alignment

;enter with address in Ra (32 bits)
;uses Rb, Rc; result in Rd.
;Note d must be less than ¢ e.g. 0,1

™ ™

BIC Rb,Ra, ¥3 ;get word aligned address

LDMIA Rb, {Rd,Rc} ;get 64 bits containing answer B

AND Rb,Ra, #3 ;correction factor in bytes

MOVS Rb,Rb,LSL #3 ;...now in bits and test if aligned

MOVNE Rd,Rd,LSR Rb ;produce bottom of result word GF*
;{if not aligned) ~—

RSBNE 'Rb, Rb, #32 ;get other shift amount

ORRNE Rd,Rd,Rc,LSL Rb ;combine two halves to get result

()

6.13.5 Sign/zero extension of a half word

o

MOV Ra,Ra,LSL #16 ;move to top

MOV Ra,Ra,LSR #16 ;and back to bottom
;use ASR to get
;sign extended version

t)

6.13.6 Return setting condition codes

BICS PC,R14, #CFLAG ;returns clearing C flag
;from link register

ORRCCS PC,R14, #CFLAG ;conditionally returns
;setting C flag

™ ™

W W oy GRS WA{ FTIrerve Wt e WA pe et e epwrrt wed ey -

; This code should not be used except in User mode

; since it will reset the interrupt enable flags to

; their value when R14 was set up.

; This generally applies to non-user mode programming,
; e.g. MOVS PC,R14. MOV PC,R14 is safer!

!

.-

48 ARM Datasheet ‘ e

i W

o

+

& W W W

> W W

3

1

“« & W B W e e @ W w

7. Memory Interface

ARM rcads instructions and data from, and writes dala to, its main memory via a 32 bit data bus. A
scparate 26 bit address bus specifics the memory location to be used for the transfer, and the R/W signal
gives the direction of transfer (ARM to memory or memory to ARM). Control signals give additional
information about the transfer cycle, and in particular they facilitate the use of DRAM page mode where
applicable. (Interfaces to static RAM bascd memories are not ruled out; they are in general much simpler

than thc DRAM interface described here.)

7.1 Cycle types

All memory transfer cycles can be placed in one of four categories:

(1) Non-sequential cycle. ARM requests a transfer to or from an address which is unrelated to the

address used in the preceding cycle.

(2) Sequential cycle. ARM requests a transfer to or from an address which is either the same as the

address in the preceding cycle, or is one word after the preceding address.

(3) Internal cycle. ARM does not require a transfer, as it is performing an internal function and no useful

prefetching can be performed at the same time.

(4) Co-Processor register transfer. ARM wishes to use the data bus to communicate with a Co-Processor,

but does not requirc any action by the memory system,

Thesc four classes are distinguishable to the memory system by inspection of the MREQ and SEQ control
lincs (see table 1). These control lines are generated during phase 1 of the cycle before the cycle whose
characteristics they forecast, and this pipelining of the control information gives the memory system

sufficient time to decide whether or not it can use a page mode access.

Co-Processor register transfer (C-cycle)

| | |

| MREQ | SEQ | Cycle type

| | |

| | !

| 0 | o] | Non-sequential cycle (N-cycle)
| ! |

] 0 | 1 | Sequential cycle (S-cycle)
| |]

} 1 | 0 | Internal cycle (I-cycle)
| ! |

| I f

| | |

Table 1: Memory cycle types

The following diagram shows the pipelining of the control signals, and suggests how the DRAM address
strobes (RAS and CAS) might be timed to use page mode for S-cycles. Note that the N-cycle is longer
than the other cycles. This is to allow for the DRAM precharge and row access time, and is not an ARM

ARM Datasheet

49

Chapter 7

requircment.

PH2
WREQ
SEQ
RAS
TAS
A[0:25]

D[0:31]

When an S-cycle follows an N-cycle, the address will always be one word greater than the address used in
the N-cycle. This address (marked "a" in the above diagram) should be checked to ensure that it is not the
last in the DRAM page before the memory system commits to the S-cycle. If it is at the page end, the
S-cycle cannot be performed in page mode and the memory system will have to perform a full access. The
processor clock must be stretched to match the full access.

When an S-cycle follows an I- or C-cycle, the address will be the same as that used in the I- or C-cycle.
This fact may be used to start the DRAM access during the preceding cycle, which enables the S-cycle to
run at page mode speed whilst performing a full DRAM access:

50

(d

&\ | |

L

(|

N-cycle Scycle | lcycle | Cecycle
] | |
_] L]
I —— |
|
| L
X a X lara X X

m = om

PH2
MREQ
SEQ

RAS

|

O
>
w

A[0:25]

D[0:31]

K
CO—CO——C P

™

m ®
-y we

- om

I-cycle S-cycle

&l

_

ARM Datasheet é

4
LT

()

l
m‘n"m-u—-nm-muh

}
|

(E

L

Nl FTH

N
W v

B L e . R an T A o s W SN T 0 T ALY AR (A B At pn VB A 1
N AN e T T T Y TS Ca 4 A hESMEL MK B AR S AN VI AT S R LA b

kS

-~

‘5

Lam

<_. '< ‘)

=

-»

\(4

Memory Interface

7.2 Byte addressing

The processor address bus gives byte addresses, but instructions arc always words (where a word is 4
bytes) and data quantitics arc usually words. Single data transfers (LDR and STR) can, however, specify
that a byte quantity is requircd. The B/W control line is used to request a byte from the memory system;
normally it is HIGH, signifying a request for a word quantity, and it goecs LOW during phase 2 of the
preceding cycle to request a byte transfer.

When a byte is requested in a rcad transfer (LDRB), the memory system can safely ignore that the request
is for a byte quantity and present the whole word. ARM will perform the byte extraction internally.
Alternatively, the memory system may activate only the addressed byte of the memory. (This may be
desirable in order to save power, or to cnable the use of a common decoding system for both read and
write cycles.)

If a byte write is requested (STRB), ARM will broadcast the byte value across the data bus, presenting it at
cach byte location within the word. The memory system must decode A[0,1] to cnable writing only to the
addressed byte.

One way of implementing the byte decode in a DRAM system is to separate the 32 bit wide block of
DRAM into four byte wide banks, and generate the column address strobes independently:

A[0] Al1] PH1 CAS

: Lokl .
S
DD

CASO drives the DRAM bank which is connected to D{0:7], CAS1 drives the bank connected to D[8:15],
and so on. This has the added advantage of reducing the load on each column strobe driver, which
improves the precision of this time critical signal.

o

FT%%

|

|

Kﬁ
>
%]
'\

T:
>
w
W

7.3 Address timing

Normally the processor address changes during phase 2 to the value which the memory system should use
during the following cycle. This gives maximum time for driving the address to large memory arrays, and
for address translation where required. Dynamic memories usually latch the address on chip, and if the
latch is timed correctly they will work even though the address changes before the access has completed.
Static RAMs and ROMs will not work under such circumstances, as they require the address to be stable
until after the access has completed. Therefore for use with such devices the address transition must be
delayed until after the end of phase 2. An on chip address latch, controlled by ALE, allows the address
timing to be modified in this way.

In a system with a mixture of static and dynamic memories (which for these purposes means a mixture of
devices with and without address latches), the use of ALE may change dynamically from one cycle to the
next, at the discretion of the memory system.

ARM Datasheet 31

Chapter 7

(M

7.4 Memory management

The ARM address bus may be processed by an address translation unit before being presented to the
memory, and ARM is capable of running a virtual memory system. The ABORT input to the processor

may be used by the memory manager to inform ARM of page faults. Various other signals enable different
page protection levels to be supported:

o m om

* R/W can be uscd by the memory manager to protect pages from being written o,

* OPC indicates that the word being fetched will be used as an instruction, so this signal can be used

to control "execute only” pages.

" TRANS indicates whether the processor is in User or a non-user mode, and may be used to protect 5
system pages from the user, or to support completely separate mappings for the system and the user.
In the latter case, the T bit in LDR and STR instructions can be used to offer the supervisor the
user’s view of the memory.

(B

m

* M[0,1} can give the memory manager full information on the processor mode.

Address translaton will normally only be necessary on an N-cycle, and this fact may be exploited to reduce
power consumption in the memory manager and avoid the translation delay at other times.

If an N-cycle is matched to a full DRAM access, it will be longer than the minimum processor cycle time.
Stretching phase 1 rather than phase 2 will give the translation system more time to generate an abort
(which must be sct up to the end of phase 1).

LI L

7.5 Use of MEMC

MEMC (VTI part number VL86C110) is an integrated memory controller for ARM which incorporates an
address translation system and generates all the critical system timing signals. N-cycles run at up to 4 MHz
(including translation), and S- and I-cycles at up to 8 MHz. It interfaces ARM to up to 4 MBytes of
DRAM, and allows for video DMA, system ROM and IO devices.

™

W W Byt W ewemevema Wod g e

™

MEMC was specified to support all the functionality of the prototype ARM devices, which did not have the -
multiply instruction or the Co-Processor interface of the present design. The following logic is required to
modify the MREQ signal to MEMC in order to ensure correct operation of the multiply instruction:

REF8M

|

A4

® m

)

bad

T

- p———

MREQ

L)

D Q MMREQ

L)

w—

This logic modifies MREQ from the ARM to produce MMREQ, which is connected to the MREQ input
on MEMC. REF8M is a MEMC output. Without this change, MEMC may merge the first instruction
prefetch following a multiply with the last cycle of a DMA or refresh operation, which will cause the
instruction to be fetched from the incorrect address.

m

)

)

(If Co-Processor capability is required, further logic must be added to modify the behaviour of MEMC.
This is described in the next chapter.)

52 ARM Datasheet -

T R c\ Rk s,—wmvmw* r’n":?\"""T'“AT"’TF‘Sﬁ’&“’SW ‘:"\‘W\v*mw'wxvﬁ‘z Ty

O Wb W

o« @ W W

B W odJd e e W W W

- -

8. Co-Processor Interface

The functionality of the ARM instruction sct may be extended by the addition of up to 16 external Co-
Processors. When the Co-Processor is not present, instructions intended for it will trap, and suitable
software may be installed to emulate its functions. Adding the Co-Processor will then increase the system
performance in a software compatible way.

8.1 Interface signals

Three dedicated signals control the Co-Processor interface, CPI, CPA and CPB. An external pull-up
resistor is normally rcquired on both CPA and CPB.

8.1.1 Co-Processor present/absent

ARM takes CPI LOW whenever it starts to exccute a Co-Processor (or undefined) instruction. (This will
not happen if the instruction fails to be executed because of the condition codes.) Each Co-Processor will
have a copy of the instruction, and can inspect the CP# field 1o see which Co-Processor it is for. Every Co-
Processor in a system must have a unique number, and if that number matches the contents of the CP#
ficld, the Co-Processor should puil the CPA (Co-Processor absent) line LOW. If no Co-Processor has a
number which matches the CP# ficld, CPA will float HIGH, and ARM will take the undefined instruction
trap. Otherwise ARM observes the CPA line going LOW, and waits until the Co-Processor is not busy.

8.1.2 Busy-waiting

If CPA goes LOW, ARM will watch the CPB (Co-Processor busy) line. Only the Co-Processor which is
pulling CPA LOW is allowed to drive CPB LOW, and it should do so when it is ready to complete the
instruction. ARM will busy-wait while CPB is HIGH, unless an enabled interrupt occurrs, in which case it
will break off from the Co-Processor handshake to process the interrupt. Normally ARM will return from
processing the interrupt to retry the Co-Processor instruction.

When CPB goes LOW, the instruction continues to completion. This will involve data transfers taking
place between the Co-Processor and cither ARM or memory, except in the case of Co-Processor data
operations which complete immediately the Co-Processor ceases to be busy.

All three interface signals arc sampled by both ARM and the Co-Processor(s) on the rising edge of PH2. If
all three are LOW, the instruction is committed to exccution, and if transfers are involved they will start on
the next cycle. If CPI has gone HIGH after being LOW, and before the instruction is committed, ARM
has broken off from the busy-wait state to service an interrupt. The instruction may be restarted later, but
other Co-Processor instructions may come sooner, and the instruction should be discarded.

8.1.3 Pipeline following

In order to respond corrcctly when a Co-Processor instruction arises, each Co-Processor must have a copy
of the instruction. All ARM instructions are fetched from memory via the main data bus, and Co-Processors
are connected to this bus, so they can keep copies of all instructions as they go into the ARM pipeline. The
OPC signal indicates when an instruction fetch is taking place, and PH2 gives the timing of the transfer, so
these may be used together to load an instruction pipeline within the Co-Processor.

8.2 Data transfer cycles

Once the Co-Processor has gone not-busy in a data transfer instruction, it must supply or accept data at the
ARM bus rate (defined by PH2). It can deduce the direction of transfer by inspection of the L bit in the

ARM Daasheet 53

Chapter 8

instruction, but must only drive the bus when permitted to by DBE being HIGH. The Co-Processor is
responsible for determining the number of words o be transferred; ARM will continue to increment the
address by onc word per transfer until the Co-Processor tells it to stop. The termination condition is
indicated by the Co-Processor releasing CPA and CPB to float HIGH.

There is no limit in principle to the number of words which one Co-Processor data transfer can move, but
by convention no Co-Processor should allow more than 16 words in one instruction. More than this would
worsen the worst case ARM interrupt latency, as the instruction is not interruptable once the transfers have
commenced. At 16 words, this instruction is comparable with a block transfer of 16 registers, and therefore
does not affect the worst case latency.

8.3 Register transfer cycle

The Co-Processor register transfer cycle is the one case when ARM requires the data bus without requiring
the memory to be active.

The memory system is informed that the bus is required by ARM taking both MREQ and SEQ HIGH.
When the bus is free, DBE should be taken HIGH to allow ARM or the Co-Processor to drive the bus, and
a PH2 cycle times the transfer.

8.4 Privileged instructions

The Co-Processor may restrict certain_instructions for use in supervisor mode only. To do this, the Co-
Processor will have to track either the TRANS pin or the M{[0,1] pins.

As an example of the usc of this facility, consider the case of a floating point Co-Processor (FPU) in a
multi-tasking system. The operating system could save all the floating point registers on every task switch,
but this is inefficient in a typical system where only one or two tasks will use floating point operations.
Instead, there could be a privileged instruction which turns the FPU on or off. When a task switch happens,
the operating system can turn the FPU off without saving its registers. If the new task attempts an FPU
operation, the FPU will appear to be absent, causing an undefined instruction trap. The operating system
will then realise that the new task requires the FPU, so it will re-cnable it and save FPU registers. The task
can then use the FPU as normal. If, however, the new task never attempts an FPU operation (as will be the
case for most tasks), the state saving overhead will have been avoided.

8.5 Idempotency

A consequence of the implementation of the Co-Processor interface, with the interruptable busy-wait state,
is that all instructions may be interrupted at any point up to the time when the Co-Processor goes not-busy.
If so interrupted, the instruction will normally be restarted from the beginning after the interrupt has been
processed. It is therefore essential that any action taken by the Co-Processor before it goes not-busy must
be idempotent, ie must be repeatable with identical results.

For example, consider a FIX operation in a floating point Co-Processor which returns the integer result to
an ARM register. The Co-Processor must stay busy while it performs the floating point to fixed point
conversion, as ARM will expect to receive the integer value on the cycle immediately following that where
it goes not-busy. The Co-Processor must therefore preserve the original floating point value and not corrupt
it during the conversion, because it will be required again if an interrupt arises during the busy period.

The Co-Processor data operation class of instruction is not generally subject to idempotency considerations,
as the processing activity can take place after the Co-Processor goes not-busy. There is no need for ARM
to be held up until the result is generated, because the result is confined to stay within the Co-Processor.

54 ARM Datasheet

™ ™

N T TR AL T AT Tt A N MU TR T T e e :'x;‘t:-::_?’ B Oy et U A IS MR e M T e i L e ~;-.me

“ W W ow

-’ ‘-

‘-i

- W @ d

) ~j) K o— -

&

N

Co-Processor Interface

8.6 Undefined instructions

Undefined instructions arc trcated by ARM as Co-Processor instructions. All Co-Processors must be absent
(ic let CPA float HIGH) when an undefined instruction is presented. ARM will then take the undefined
instruction trap. Note that the Co-Processor need only look at bit 27 of the instruction to differentiate
undefined instructions (which all have 0 in bit 27) from Co-Processor instructions (which all have 1 in bit
27).

8.7 Use of MEMC

The MREQ and SEQ signals from ARM must be modified before being presented to MEMC in order to
ensure that the data bus is free for a register transfer should that be required. The following circuit
performs the required operation, and incorporates the logic required to ensure that multiplics work:

REF8M
b
R .
MREQ D QF———q~ MMREQ
—1
MSEQ
REF8M
P G
CPB:—:D—— D Q
SEQ

In addition, ARM or the Co-Processor must be allowed 1o drive the data bus for the register transfer cycle,
and the system ROM must be prevented from driving the bus at the same time:

REF8M
REF8M ROMCS l
l G

L } b Q MROMCS
MREQ

SEQ)———— D Q

MDBE

DBE

(These two modifications can be fitted into one 16L8A PAL.)

ARM Datasheet 55

s ? o~ ‘<~‘,x o~ v‘\xnﬂ,«\‘-“ \1‘;\'."&* B Al ""Y ﬁ.”ﬂw"rﬂ"}

9. Instruction Cycle Operations

In the following tables MREQ and SEQ (which are pipelined up to one cycle ahead of the cycle to which
they apply) are shown in the cycle in which they appear, so they predict the address of the next cycle. The
address, B/W, R/W, and OPC (which appear up to half a cycle ahead) are shown in the cycle to which

they apply.

9.1 Branch and branch with link

A branch instruction calculates the branch destination in the first cycle, whilst performing a prefetch from
the current PC. This prefetch is done in all cases, since by the time the decision to take the branch has
been reached it is already too late to prevent the prefetch.

During the second cycle a fetch is performed from the branch destination, and the return address is stored
in register 14 if the link bit is set.

The third cycle performs a fetch from the destination + 4, refilling the instruction pipeline, and if the

branch is with link R14 is modified (4 is subtracted from it) to simplify return from SUB PCR14,#4 to
MOV PC,R14. This makes the STM ..{R14] LDM ..{PC]} type of subroutine work correctly.

Cycle address b/w r/w data seq mreq opc
1 pc+8 1 0 (pc+8) o} 0 o]
2 alu 1 o} (alu) 1 o} 0
3 alu+4 1 0 (alu+4) 1 0 0
alu+8

(pc is the address of the branch mstrucnon alu is an address calculated by ARM, (alu) are the contents of
that address, etc).

9.2 Data operations

A data operation executes in a single datapath cycle except where the shift is determined by the contents of
a register. A register is read onto the A bus, and a second register or the immediate field onto the B bus.
The ALU combines the A bus source and the shifted B bus source according to the operation specified in
the instruction, and the result (when required) is written to the destination register. (Compares and tests do
not produce results, only the ALU status flags are used.)

An instruction prefetch occurs at the same time as the above operation, and the program counter is
incremented.

When the shift length is specified by a register, an additional datapath cycle occurs before the above
operation 10 copy the bottom 8 bits of that register into a holding laich in the barrel shifter. The instruction
prefetch will occur during this first cycle, and the operation cycle will be internal (ie will not request
memory). This internal cycle is configured to merge with the next cycle into a single memory N-cycle
when MEMC is used as the memory interface.

The PC may be any (or all!) of the register operands. When read onto the A bus it appears without the
PSR bits, on the B bus it appears with them. Neither will affect external bus activity. When it is the
destination, however, external bus activity may be affected. If the result is written to the PC, the contents
of the instruction pipeline are invalidated, and the address for the next instruction prefetch is taken from the
ALU rather than the address incrementer. The instruction pipeline is refilled before any further execution

56 ARM Datasheet

YRR

RERRRN NN ‘\’5\\ 4'-

R R ! SQ \HL\‘FT T ""'»‘ P Qg ui"*

® o

& AT\

LI

mmEmm®®m

HEAR]
W DRSNS WU ENEOR Y ey Y SRS W WUIDGOY W PRme Tt ¥ortomel P R w e o s

momom

(i

W - -n'lnl-:?m

m

T‘w"

T .
—xq‘a, A

Instruction Cycle Operations

takes place, and during this time exceptions arc locked out.

Cycle address b/w r/w data seq mreq opc

) normal 1 pc+8 1 0 (pct8) 1 0 o©
pct+l2
" dest=pc 1 pc+8 1 0 (pc+8) 0 0 0 .
2 alu 1 0 (aluw) 1 0o 0
3 alu+4 1 0 (alutd) 1 0 o
alu+8
shift (Rs) 1 pct8 1 0 (pc+8) O 1 0 f
2 pcti2z 1 0 - 1 o 1 :
”i pc+l2 i
shift (Rs), 1 pc+8 1 0 (pct8) O 10
dest=pc 2 pc+l2 1 0 - 0 0 1
3 alu 1 0 (alu) 1 0] o}
4 alu+4 1 0 (alu+4) 1 0 ¢}
alu+8
J 9.3 Multiply and multiply accumulate ‘

The multiply instructions make use of special hardware which implements a 2 bit Booth’s algorithm with
\ carly termination. During the first cycle the accumulate Register is brought to the ALU, which either

transmits it or produces zero (according to whether the instruction is MLA or MUL) to initialise the

destination register. During the same cycle one of the operands is loaded into the Booth’s shifter via the A
n bus.

The datapath then cycles, adding the second operand to, subtracting it {rom, or just transmitting, the result
§ register. The sccond operand is shifted in the Nth cycle by 2N or 2N+1 bits, under control of the Booth’s
logic. The first operand is shifted right 2 bits per cycle, and when it is zero the instruction terminates

(possibly after an additional cycle to clcar a pending borrow). //f”_)l, S A R 24 a/ O/WM/ o s e

o All cycles except the first are intemal. tustounction.

T - . T stcqnd qpeand = for aprmd & rihivacbion.
If the destination is the PC, all writing to it is prevented. The instruction will proceed as normal except that

i the PC will bc unaffected. (If the S bit is set the PSR flags will be meaningless.)

! Cycle address b/w r/w data seq mreqg opc

(Rs)=0,1 1 pc+8 1 0 (pct8) O 1 0
2 pc+l2 1 0 - 1 0 1
pc+l2
(Rs)>1 1 pct8 1 o] {(pc+8) o} 1 0
2 pc+l2 1 0 - 0 1 1
. pc+l2 1 ¢] - 0 1 1
m pctl2 1 0 - 0 1 1
m+1 pc+l2 1 0 - 1 o] 1
pctl2

(m is the number cycles required by the Booth’s algorithm; see the section on instruction speeds.)

ARM Datasheet 57

A R AN A T B

B adRACA S B St § Rav2e)

"Chapter 9

9.4 Load register

The first cycle of a load register instruction performs the address calculation. The data is fetched from
memory during the second cycle, and the base register modification is performed during this cycle (if
required). During the third cycle the data is transferred to the destination register, and external memory is
unused. This third cycle may normally be merged with the following prefetch to form one memory N-cycle.

Either the base or the destination (or both) may be the PC, and the prefetch sequence will be changed if the
PC is affected by the instruction.

The data fetch may abort, and in this case the base and destination modifications are prevented.

Cycle
normal 1
2
3
~dest=pc 1
2
3
4
5
i
i base=pc, 1
i write~back 2
dest#¥pc 3
4
S
base=pc, 1
write-back 2
dest=pc 3
4
5

address b/w r/w data

pc+8
alu

pct+l2

pctl2

pc+8
alu
pc+l2
(alu)
(alu)+4
{alu)+8

pc+8
alu
pc’
pc’
pc’+4
pc’+8

pc+8
alu
pc’
(alu)
(alu)+4
(alu)+8

1
b/w
1

[« N eoNelNelNe]

0 (pc+8)
Q (alu)
0 -

0 (pc+8)
o] (alu)
0 -

0 ((alu))

0 ((alu)+4)

(pc+8)
(alu)
(pc”)

(pc’ +4)

0 (pct+8)
0 (alu)
O -—

0 ((alu))
0({alu)+4)

seq mreq opc trans

0
0
1

== 000

= 000

0
1
0

[o Mool o] ol oMol oel

[ele el e

0

1 t :

1 .
'

0

1 t

1

0

0

0

1 t

1

0

0

0

1 t

1

0

0

(pc” is the PC value modified by write-back; t shows the cycle where the force translation option in. the

instruction may be used.)

58

I R AR RS

ARM Datasheet
BN A I R M SR

"ﬂf’)) S

& @

Instruction Cycle Operations

Y

9.5 Store register

The first cycle of a storc register is similar to the first cycle of load register. During the second cycle the
base modification is performed, and at the same time the data is written to memory. There is no third
cycle.

. (W

The PC will only be modified if it is the base and writc-back occurs.

A data abort prevents the base write-back.

R %
-

Cycle address b/w r/w data seq mreq opc trans

';3 normal 1 pc+8 1 0 (pc+8) O 0 o0
' 2 alu b/w 1 Rd © 0 1 t
pc+l2
;) base=pc, 1 pc+8 1 0 (pct+8) O o] 0
write-back 2 alu b/w 1 Rd 0 (o] 1 t
} 3 pc’ 1 0 (pc’) 1 o] 0
!9 4 pc’+4 1 0 (pc’+4) 1 0 0
pc’+8

(o

9.6 Store multiple registers

) Store multiple proceeds very much as load multiple, without the final cycle. The restart problem is much
more straightforward here, as there is no wholesale overwriting of registers to contend with.

.

Cycle address b/w r/w data seq mreq opc

- 1 register 1 pet8 1 O (pct8) O 0 0

2 alu 1 1 Ra 0 0 1

QD n registers 1 pct8 1 0 (pc+8) O 0 0

{(n>1) 2 alu 1 1 Ra i 4] 1

alu+. 1 1 R. 1 0 1

. n alu+. 1 1 R. 1 0 1

] n+l alut. 1 1 R. 0 0 1
)
o

ARM Datasheet 59

Chapter 9

9.7 Load multiple registers

The first cycle of LDM is used to calculate the address of the first word to be transferred, whilst
performing a prefeich from memory. The second cycle fetches the first word, and performs the basc
modification. During the third cycle, the first word is moved to the appropriate destination register while
the second word is fetched from memory, and the modified base is moved to the ALU A bus input latch
for holding in case it is nceded to patch up after an abort. The third cycle is repeated for subsequent
fetches until the last data word has been accessed, then the final (internal) cycle moves the last word to its
destination register.

The last cycle may be merged with the next instruction prefetch to form a single memory N-cycle.

If an abort occurs, the instruction continues to completion, but all register writing after the abort is
prevented. The final cycle is altered to restore the modified base register (which may have been overwritten
by the load activity before the abort occurred).

If the PC is the base, write-back is prevented.

When the PC is in the list of registers to be loaded, and assuming that no abort takes place, the current
instruction pipeline must be invalidated.

Note that the PC is always the last register to be loaded, so an abort at any point will prevent the PC from
being overwritten.

Cycle address b/w r/w data seq mreq opc

1 register 1 pc+8 1 0 (pct+t8) O 0 0
2 alu 1 0 (alu) O 1 1
3 pc+l2 1 0 - 1 0 1
pc+l2
1 register 1 pc+8 1 0 (pct8)y O 0 0
dest=pc 2 alu 1 0 pc’ O 1 1
3 pc+l2 1 0 ~ o] 0 1
4 pc’ 1 0 {(pc’) 1 0 0
5 pc’+4 1 0 (pec'+4) 1 0 Q
pc’+8
n registers 1 pc+8 1 0 (pct8) 0 0 0
(n>1) 2 alu 1 0 (alu) 1 0 1
. alu+. 1 0 (alu+.) 1 0 1
n alu+. 1 0 (alu+.) 1 [0} 1
n+l alu+. 1 0 (alu+.) 0 1 1
n+2 pc+12 1 0 - 1 0 1
pctl2
n registers 1 pc+8 1 0 - (pct+8) O 0 0
(n>1) 2 alu 1 0 (alu) 1 0 1
incl. pc . alu+. 1 0 (alu+.) 1 0 1
n alu+. 1 0 (alu+.) 1 0 1
n+l alu+. 1 0 pc’ 0 1 1
n+2 pct+l2 1 0 - 0 0 1
n+3 pc’ 1 0 {(pc’) 1 0 o]
n+4 pc’+4 1 0 (pc’+4)y 1 0 0
pc’ +8
60 ARM Datasheet

N I U DA PRI L ARSI e d AN XS AR RO OR M Lol P W L i ot i b a7 VB ek W M
7o -* PP R SN = A . . R . s %, < ’ p RN T o R R R

(&
- IN

TR

AT L AL AL AR VL

4

I T T I L

®

"
ORI W TUSNDE U VONRTUEE DX JUWRERE Wi WURTERN 0| RN KX CXSRDN T STRemaN W MW B emcomes YT peTeses Sy sty gy e

vl

-3

]

W

W oW od e o w W W oW oW ow o w W

U Y VRN ¥

Instruction Cycle Operations

9.8 Software interrupt and exception entry

Exceptions (and softwarc interrupts) force the PC to a particular value and refill the instruction pipeline
from there. During the first cycle the forced address is constructed, and a mode change may take placc The
return address is moved to register 14,

During the sccond cycle the return address is modified to facilitate rctumn, though this modification is less
uscful than in the case of branch with link.

The third cycle is required only to complete the refilling of the instruction pipeline.

Cycle address b/w r/w data seq mreq opc trans

1 pc+8 1 0 (pct+8) O 0 0 1

2 Xn 1 0 (Xn) 1 0 0 1

3 Xn+4 1 0 (Xn+4) 1 o] 0 1
Xn+8

(For software interrupt pe is the address of the SWI instruction, for interrupts and reset pc is the address of
the instruction following the last one to be exccuted before cntering the exception, for prefetch abort pc is
the address of the aborting instruction, for data abort pec is the address of the instruction following the one
which attempted the aborted data transfer. Xn is the appropriate trap address.)

9.9 Co-Processor data operation

A Co-Processor data operation is a request from ARM for the Co-Processor to initiate some action. The
action need not be completed for some time, but the Co-Processor must commit to doing it before pulling
CPB LOW.

If the Co-Processor can never do the requested task, it should leave CPA and CPB to float HIGH. If it can
do the task, but can’t commit right now, it should pull CPA LOW but leave CPB HIGH until it can
commit. ARM will busy-wait until CPB goes LOW.

Cycle address b/w r/w data seq mreq opc cpi cpa cpb

ready 1 pc+8 1 0 {(pct+8) 1 0 0 0 0 0
pc+l2

not ready 1 pct+8 1 o] (pct8) 0 1 0 0 o} 1

2 pc+8 1 0 - 0 1 1 0 0 1

. pc+8 1 0 - 0 1 1 0 0 1

n pct8 1 0 - 0 0 1 0 0 0

ARM Datasheet - 61

@

(8

Chapter 9

9.10 Co-Processor data transfer (from memory to Co-Processor)

Here the Co-Processor should commit to the transfer only when it is ready to accept the data. When CPB
gocs LOW, ARM will produce addresses and expect the Co-Processor to take the data at sequential cycle
rates. The Co-Processor is responsible for determining the number of words o be transferred, and indicates
the last transfer cycle by allowing CPA and CPB to float HIGH.

" ™

ARM spends the first cycle (and any busy-wait cycles) generating the transfer address, and performs the
write-back of the address base during the transfer-cycles.

E\

‘Cycle address b/w r/w data seq mreg opc cpli cpa cpb

1 register 1 pc+8 1 0 (pct+8) O 0 o] 0 0 0
ready 2 alu 1 0 (alu) O 0 1 1 1 -

pc+l2 @

1 register 1 pc+8 1 0 (pc+8) 0 1 0 0 0 1
not ready 2 pc+8 1 0 - 0 1 1 0 0 1 é&

. pc+8 1 0 - 0 1 1 0 0 1
n pc+8 1 0 - 0 0 1 0 0 0
n+1 alu 1 0 (alu) O 0 1 1 1 1 @
pc+l2

n registers 1 pct+8 1 0 (pc+8) 0O 0 0 0 0 0
(n>1) 2 alu 1 0 (alu) 1 0 1 1 0 0 é%j)
ready . alu+. 1 0 (alu+.) 1 0 1 1 0 0

n alu+. 1 0 (alu+.) 1 0 1 1 0 0 _
n+l alu+. 1 0 (alu+.) O 0 1 1 1 1 !gf
pc+l2 -

m registers 1 pc+8 1 0 (pc+8) O 1 0 0 0 1 ti
(m>1) 2 pc+8 1 0 - - 0 1 1 0 0 1 @:‘
not ready . pc+8 1 0 - 0 1 1 0 0 1

n pc+8 1 0 - 0 0 1 0 0 0
a+1 alu 1 0 (alu) 1 o 1 1 0o o @ i
ready . alu+. 1 0 (alu+.) 1 0 1 1 0 0
n+m alu+. 1 0 (alu+.) 1 0 1 1 0 0
n+m+1 alu+. 1 0 (alu+.) O 0 1 1 1 1 éé..!
pc+l2 -
-
€
,_)M‘
_k
«
.
EL.I
€ s
- x
62 ARM Datasheet l
e

: vy TR R AT T A T T A R R Y T N, Ty S R I R R R R C Ty T AR
T R T T R D TR T PR N S Ry RS TR

- w W ‘J ¢ e

~anr - Qa' d&‘v ui} gl' ”‘l"

3

' B

Instruction Cycle Operations

9.11 Co-Processor data transfer (from Co-Processor to memory)

The ARM controls these instructions exactly as for memory to Co-Processor transfers, with the one
exception that the R/W linc is inverted during the transfer cycle.

Cycle address b/w r/w data seq mreq opc cpi cpa cpb

1 register 1 pct+8 1 0 (pct8) O 0 0 0 0 0
ready 2 alu 1 1 CPdata O 0 1 1 1 1
pc+l2
1 register 1 pc+8 1 0 (pct8) O 1 Q 0 0 1
not ready 2 pc+8 1 0 - [¢] 1 1 0 0 1
. pct8 1 0 - 0 1 1 0 0 1
n pct8 1 0 - 0 o] 1 0 0 0
n+1l alu 1 1 CPdata O Q 1 1 1 1
pc+l2
n registers 1 pct+8 1 0 (pct8) 0 0 0 0 0 0
(n>1) 2 alu 1 1 CPdata 1 0 1 1 0 0
ready . alu+. 1 1 CPdata 1 0 1 1 0 0
n alu+. 1 1 CPdata 1 0 1 1 0 0
n+l alu+. 1 1 CPdata O 0 1 1 1 1
pc+l2
m registers 1 pc+8 1 0 (pct8) 0 1 0 0 0 1
(m>1) 2 pc+8 1 0 - 0 1 1 0 0 1
not ready . pc+8 1 0 - o 1 1 0 0 1
n pc+8 1 0 - 0 0 1 0 o] 0
n+1 alu 1 1 CPdata 1 o] 1 1 0 0
ready . alu+. 1 1 CPdata 1 0 1 1 0 o]
n+m alu+. 1 1 CPkdata 1 0 1 1 0 0
n+mt+l alu+. 1 1 CPdata © [1 1 1 1
pc+l2

9.12 Co-Processor register transfer (LLoad from Co-Processor)

Here the busy-wait cycles are much as above, but the transfer is limited to one data word, and ARM puts
the word into the destination register in the third cycle. The third cycle may be merged with the following
prefetch cycle into one memory N-cycle as with all ARM register load instructions.

Cycle address b/w r/w data seq mreq opc cpl cpa cpb

ready 1 pc+8 1 0 (pc+8) 1 1 0 0 o- Q0
2 pc+l2 1 0 CPdata 0 1 1 1 1 1
3 pctl2 1 0 - 1 0 1 1 -
pc+l2 Cee
not ready 1 pc+8 1 0 (pct8) O 1 0 0 o] 1
2 pc+8 1 0 - 0 1 1 0 0 1
. pct8 1 0 - 0 1 1 0 0 1
n pct+8 1 0 - 1 1 1 0 0 0
n+l pc+l2 1 0 CPdata O 1 1 1 1 1
n+2 pc+l2 1 0 - 1 0 1 1 - -
pct+l2

ARM Datasheet 63

Chapter 9

9.13 Co-Processor register transfer (Store to Co-Processor)

As for the load from Co-Processor, except that the last cycle is omitted. 6
Cycle address b/w r/w data seq mreg opc cpi cpa cpb 6
ready 1 pc+8 1 0 (pct8) 1 1 0 0 0 o]

2 pctl2 1 Rd 1 o 1 1 1 1 &
pc+l2
not ready 1 pct+8 1 0 (pct8) O 1 0 0 0 1 6
2 pc+8 1 o] - 0 1 1 0 0 1 <
. pc+8 1 0 - 0 1 1 0 0 1
n pct+8 1 0 - 1 1 1 0 0 0
n+l pctl2 1 1 R& 1 0 1 1 1 1 4

pctl?2

9.14 Undefined instructions and Co-Processor absent

P When a Co-Processor detects a Co-Processor instruction which it cannot perform, and this must include all Q
e undefined instructions, it must not drive CPA or CPB. These will float HIGH, causing the undefined
instruction trap to be taken.

m

|
|

= Cycle address b/w r/w data seq mreq opc cpi cpa cpb G
éw 1 pc+8 1 0 (pc+8) O 1 0 0 1 1
§W 2 pc+8 1 o - 0 0 0 1 1 1 6
. 3 Xn 1 0 (Xn) 1 o] 0 1 1 1
: 4 Xn+4 1 0 (Xn+4) 1 0 0 1 1 1
i‘ Xn+8 6
! ' 9.15 Unexecuted instructions _ X

Any instruction whose condition code is not met will fail to execute. It will add one cycle to the execution

. time of the code segment in which it is embedded. £
;: Cycle address b/w r/w data seq mreq opc '
; 1 pc+8 1 0 (pct8) 1 0 0
= pc+l2 £
i
i (
¥ ¢
‘
'
i

64 ARM Datasheet ¢

b

TR RIEATN T I AN VIR RS TN o ST 3-}5.,5’;-;’%@\.,‘K@.‘g‘ﬁﬁz{g‘g\‘ﬁj SRR K

w3 Y Yo ik
Al ‘,\ 1

(\v

wl’ -

-

}

-

“ w w@

-

v

Instruction Cycle Operations

9.16 Instruction speeds

Due to the pipelined architecture of the CPU, instructions overlap considerably. In a typical cycle one
instruction may be using the data path while the next is being decoded and the one after that is being
fetched. For this rcason the following table presents the incremental number of cycles required by an
instruction, rather than the total number of cycles for which the instruction uses part of the processor.
Elapsed time (in cycles) for a routinc may be calculated from these figures.

If the condition is met the instructions take:

Data Processing 1S + 1 8 for SHIFT(Rs)
+ 1 S+ 1 N if R15 written

LDR 1S+1N+11 + 1 S + 1 N if R15: 1locaded

STR 2 N : L

LDM nS+1N+1TI + 1S + 1 N if R15 loaded

STM (n-1)S + 2 N

B, BL 2S + 1N

SWI, trap 2SS+ 1N

MUL, MLA 1S + m I

cDhp . 18 + b I

LDC, STC (n-1)S + 2 N+ b I

MRC 18 +bI+1C

MCR 18 + (b+1)I + 1 C

n is the number of words transferrcd.

m is the number of cycles requircd by the multiply algorithm, which is determined by the contents of Rs.
Multiplication by any number betwecen 24(2m-3) and 2°(2m-1)-1 inclusive takes m cycles for m>1."
Multiplication by 0 or 1 takes 1 cycle. The maximum value m can take is 16.

b is the number of cycles spent in the Co-Processor busy-wait loop.
If the condition is not met all instructions take one S cycle.

The cycle types (N, S, I and C) are delined in the memory interface chapter.

ARM Datasheet 65

iO. DC Parameters

10.1 Absolute Maximum Ratings

=\

Symbol - Parameter Min

I | ! | ! i |
| | | | Max | Units | Note |
! | I | | I I
! [| | I | f G
| VDD | Supply voltage | VSS-0.3 | VSS+7.0 | v b1 | -
| | I | ! I [
| Vip | Voltage applied to any pin | VSS-0.3 | VDD+0.3 | v b1 | ‘E
I I | I | | |
| Ts | Storage temperature | -40 | 125 | deg.C | 1] =
f ! ' | | | | |
NOTE:"

(1) These are stress ratings only. Exceeding the absolute maximum ratings may permanantly damage the

device. Operating the device at absolute maximum ratings for extended periods may affect device
reliability.

m ™ ™

™ om om m

m (m

)

66 ARM Datasheet

FHTLAR Fvacs RS ; >3
b EL RS Y

—

10.2 DC Operating Conditions

DC Parameters

! ! | | I | I
| Symbol | Parameter | Min | } Max | Units | Note
| ! | | | | |
| | ! ! | ! I
| VDD | Supply voltage | 4.75 | | 5.25 | v
| | ! | | f |
| WViht | IT input HIGH voltage | 2.4 | | VDD | v] 1,2
| | | | | | I
| Vvilt { IT input LOW voltage | 0.0 | | 0.8 | v | 1,2
i | | i ! | |
| Vihz | I0TZ input HIGH voltage | 2.4 | | VvbD | v | 1,3
| | | | | | |
| Vilz | IOTZ input LOW voltage | 0.0 | | 0.8 | v | 1,3
| | ! | | i {
| Vihk | ICk input HIGH voltage | vDD | | VDD | v | 1,4
| i 1-0.3 | | | |
I o | | | i |
| Vilk | ICk input LOW voltage | 0.0 | | 0.3 | v | 1,4
| | } | | f |
| Ta | Ambient operating | O | | 70 | deg
| | temperature | | | | |
! ! ! | i | |
NOTES:
(1) Voltages measured with respect to VSS.
(2) IT - TTL compatible inputs.
(3) IOTZ - Bi-directional 3-state inputs.
(4) ICk - Unbuffered clock inputs (PHI, ph2).
/]
ARM Datasheet
'z" e .t'

67

G5 L 7 PR Gk i Ui

Chapter 10

10.3 DC Characteristics
KEY 6

Mes - Values mcasured from a sample ARM

Nom - Nominal values derived from analogue simulations with VDD=5v, 100 deg.C. 6

| [J I | ! | E«

| Symbol | Parameter | Mes | Nom | Units | Note | -

J I | | | |] :

| | | | ! 1 | &

| I1DD | Supply current | 21 | | mA | | ~—

| | I | I ! !

| IIscl | Output short circuit current | >22 | | mA | 1 | &*

| f | ! | | | ~

} 1Ilu] | D.C. latch-up current | >250 | | mA "} 2 |

| | |] | | I

| 1Iin] | input leakage current | | 10 | ud | | é

! [| | | | | ”

| Vohe | output HIGH voltage (CMOS) | | 4.6 | v I 3,6 | .

| [[[[| | é"{

| Volc | output LOW voltage (CMOS) | | 0.29] v } 3,7 | :

| | | | ! | |

| Voht | output HIGH voltage (TTL) | | 3.8 | v | 4,8 |)

1 | | | | 1 ! (S

| Volt | output LOW voltage (TTL) } j 0.8 | v | 4,9 |) [

| | | | | | |

[Vihtt | input HIGH voltage (TTL) 11.85 | 2.1] Vv | 5 | é'l

| | threshold | ! | | |

| | } ! I I ! 1

| Viltt | input LOW voltage (TTL) 11.85 | 1.4 | v | 5 | @'

| | threshold | | ' | I B

[| | f] | |

| Cin | Input capacitance | I 5 | pF | |

| 1 | | | | | €
NOTES: é. -
(1) Not more than onc output should be shorted to cither rail at any time, and for no longer than 1 N 1

second. ’

™

(2) This value represents the D.C. current that the input/output pins can tolerate before the chip latches
up.
3y OC - CMOS compatible outputs.

OCZ - bi-directional 3-state outputs.

M

(4) IOTZ - TTL compatible bi-directional 3-state outputs.
(5) IT - TTL compatible inputs.

(@

P W Y B e

)

IOTZ - TTL compatible bi-directional 3-state inputs.
(6) Output current = 3mA
(7) Output current = -3mA
(8) Output current = 10mA
(9) Output current = -10mA

A

68 ARM Datasheet

e
i

y

R A T N M R U R R R IR

v W W @

- e K ' A e w

w

SR

11. AC Parameters

TEST CONDITIONS

The AC timing diagrams presented in this scction assume that the outputs of ARM have been loaded with

of the type of system in which ARM might be employed.

- the capacitive loads shown in the ‘Test Load’ column of Table 2; these loads have been chosen as typical

The output pads of ARM arec CMOS drivers which exhibit a propagation dclay that increases linearly with
thc increase in load capacitance. An ‘Output derating’ figure is given for each output pad, showing the

approximate increase in load capacitance necessary to increase the total output time by one nanosecond.

A [i

| Output | Test Load | Output derating
! Signal | (pF) ! (pF/ns)
I I |

I ! !

| D[0:31] | 100 | 5

| I }

! | !

| A[0:25] | 50] 5

! I |

f ! !

] CPI i 50 | 2.5
I | |

I] |

! MREQ | 15 | 2.5
! ! !

! SEQ | 15 I 2.5
| _ I |

] R/W | 15 | 2.5
I _ ! [

| B/W | 15 | 2.5
I . |]

| oPC | 15 | 2.5
I ! !

| TRANS] 15 | 2.5
I _ ! !

| M[0,1] ! - 15 I 2.5
! ! I

Table 2: AC test loads

ARM Datasheet

69

¢
Chapter 11
: &
T S — oK e e >|
Tv| [<>]Tv |
1<>1/ N RS P —— Tekl-mmmmmmmmm >1/ &
PHL | /1<=~====- Tekh=—m=mm=uu >IN\ | / -
| | | |
\ <= mmmmmmm Tekl-m=mmmmmmm [==>1/ \ (E
PH2 | | /<= Tckh—==—===- >\
[<-=--|-Talel-->] |] |
ALE \ | / ! | |
[[[r ! €
ABE I__/ | I < Taddrs-~-->| ! __
| 1< |<Tale>| I |<=>|Tah | | Tabz | <> | »
| Tabe] | | 1] | &
A[25:0] ! / \/ I | NNININ/N/NN/NST \ ~
| \ /\ | l_‘_/\/\/\/\/\/\/\/\ I /
et [=== === Taddrn—~-->| | Gf
| { | |__ Tdbz <
DBE |/ ! | ! \
| | <=>| | | Tdoh|<>] {<>|
| Tdbe| [[It 6
DATA ! INININ/N/N/ | | AVAVAY
ouT | NIN/N/N/N/N ! | I__/N\N/\/
I Cr—— Tdout ————~ >| | i 1 6:
DATA ! I | /1N
IN I | I _ 1/
| | <= Tabts-~>}<>} |Tabth Tdis|<>{<>|Tdih .
| | N B | (Ei
ABORT } / IN_d !
o | |<>|Tirs| | _
IRQ,FIQ [_ | J e
| | I |
R/W | } | \/\/\/\/\/\/\/ !
| } AVAVAVAVAVAVAN | GE;
| | |<>|Trwh | |
J€mme =~ Tmsd-———~—- >| I [Trwd———=>|]
o | |] |
MREQ SEQ [\/\/\/\/\/\/\/\/ | | [GE
| /\/\/\/\/\/\/\/\] | |
|<=>|Tmsh | | !
_ | ! I | é
B/W ! | | \/\/\/\/\/\/\/] >
| | AVAVAVAVAVAVAN |
| | }<>|Tbwh I | il
R T— Tmdd==~—=- > ; [[Emp—— Thwd-—~=>| | E
l_ | | |
M([0,1] I \/\/\/\/\/\/\/\/] [I
IAVAVAVAVAVAVAVANEEN i | &«
|<->|Tmdh | | !
| | | I
opC I [IRVAVAVAVAVAVAV | =
| | NAVAVAVAVAVAWAN] =
] | <>]Topch I !
[<= Ttrmd-—~-—— > | | <===-Topcd—--->|] | _
I 1 I [@
TRANS | \/\/\/\/\/\/\/\/ | AV AVAVAVAVAV/ |
] /\/\/\/\/\/\/\/\ | VAVAVAVAVAVAN f ;
|<->|Ttrmh | |<>|Ttrdh | : @,
| | | <—=-Ttrdd—--->| |
1 | | |
CPA,CPB | \ A | .
Tepi|<>| |<——mmn Teps————mn >1<>] [<>|Tcpih G;-J
_ I | Teph| Lo
CPI A] | b/ éE
P

70 ARM Datasheer e

ﬁl

8
AC Parameters

L

| | | I I | i]

| Symbol | Parameter | Min | Mes | Max | Unit | Conditions |
- | | | i | |] |

| | | | | | | measured at|

| Tv | clock non-overlap | 0 | 5 | | 11 volt levell]

| i | i | | | |

| Tck | clock period | 100 | 110000 ns |

I Tckl | clock LOW time | 45 | 50 |10000f ns | |

| Tckh | clock HIGH time | 45 | 50 |10000| ns |

| | | | | | | |

| Tabe | address bus enable | | I 30| ns |
- | Tabz | address bus disable | | | 301 ns | |
s ! | | | | | | |

| Tale | address latch open | |] 30 | ns |
- | Talel | ALE low time | |]10000} ns | Note 1 | .
1 | | [| | | ! | .

| Taddrs | ph2 to address valid] | 20] 35| ns | Note 2 | ﬂ

| Taddrn | phl to address valid|]] 105 | ns | | B
s | Tah | address hold time] 5 | | | ns | | '
: | | | | | | | | X

| Tdbe | data bus enable | |] 45 | ns | (TTL level)|

| Tdbz | data bus disable | | | 45 | ns | |

| i | } | i] |

| Tdout | data out delay | [251 55 | ns | (TTL level)|

| Tdoh | data out hold | 5 | | ! ns |

| |] |] | | |

| Tdis | data in setup | 5 | 31 | ns | |

| Tdih | data in hold i 10 | 4 | | ns |} |

| | | | | I | |

| Tabts | abort setup time | 40 | 22 | | ns | |

| Tabth | abort hold time | 5 1 0 | | | |

! | | | | | | | :
" | Tirs | interrupt setup | 10 | ! | ns | Note 3 | ;

1 | - | ! | | | | |

| Trwd | ph2 to r/w valid] | 25| 55 | ns | Note 4 | !
g | Trwh | r/w hold time | 5 | | ! i
/ | | ’ | | | | | |

| Tmsd | phl to mreqg & seq } | 20| S5} ns | |

| Tmsh | mreq & seqg hold time| 5 | | | |

| | _ | | I | | |

| Tbhwd | ph2 to b/w valid | | 251 40} ns | |

| Tbwh | b/w hold time] 5 | | | | |

| | _ | | i | | |

] Tmdd | phl to m{0,1] wvalid |] 15 { 30 | ns | |

| Tmdh | m{0,1] hold time | 5 | | |] |

| | ! | ! | |]

| Topcd | ph2 to opc valid |] 25| 3511 ns | |

| Topch | opc hold time | S | | | | i

| | | | | | { |

| Ttrmd | phl to trans valid | | 20| 35| ns | mode change]

| Ttrmh | trans hold time | 5 | | I ns | |

| | | | | i | |

| Ttrdd | ph2 to trans valid | | | 45 | ns | Note 5 |

| Trrdh | trans hold time | 5 | |] | |

! | | ! | I | |

| Tcps | cpa, cpb setup | 40 | | { ns | |

| Tcph | cpa, cpb hold time | 5 | | | ns | |

| | . | | i | | |

| Tcpi | phl to cpi delay | | { 25 | ns | |

| Tcpih | cpi hold time | 5 | | i ns | |

| | ! I | f | |

ARM Datasheet 71

3 Qs Mot IR g o 2 ey
N DT T A T
R LR AT R S R e

AR

Chapter 11

Notes: -

(1) ALE controls a dynamic storage latch; this parameter is specified to ensure that the stored charge
cannot leak sufficiently to gencrate intermediate logic levels in the associated logic.

!

(

(2) The PHI to address delay only applies to non-sequential cycles, when the address is being calculated
in the ALU. For scquential cycles the address will be valid earlicr, at the given time from PH2.
(Taddrs applies to scquential and non-scquential cycles.)

)

(3) The interrupt and reset inputs may be asynchronous. This time will guarantce that the interrupt
request is latched during this cycle.

k)

(4) The worst case for R/W only arises when an address exception occurs on a data store operation. The
address exception causes R/W to switch to read to prevent erroneous writing of memory.

(o

(3) TRANS will only change during PH2 as the result of a "force translate’ single data transfer operation
whilst in a non-user mode. Otherwise it will change during PH1 when a mode change to or from user
mode takes place.

" (W

General notes on AC parameters:

* The ‘Min’ and ‘Max’ times are not measured. The maximum delays are derived from SPICE models € g
of the relevant logic functions, with VTI slow-slow transistor models, VDD=4.7 volts, V§§=0.1 volts,

temperature 100 degrees Centigrade. The minimum hold times are calculated from the same models !

of the rclevant paths, with the time in the table being the slow path time divided by four. All é:: !

numbers have been rounded (o the nearest 5 ns. All numbers are subject to change after device f

characterisation. . ’1

* The ‘Mes’ times were measured on a sample ARM at room temperature with VDD=5v. EZ f

* Output times are to CMOS levels except for the data bus, which is to TTL levels. € %

e

€.

&

.

E ¥

€

€

N K

72 ARM Datasheet - !

EES STt ok 6 e s M Shalen R St Mt Pa ik s s T ShEbh R R DU vl pvig 3 ok S LGHGORI AN g Bers Lk bac S XA Na sty s AR E il LI AR SIS, Adul 4 B0 Stare WichR 2t 751
e T T A N T T T W LR U T S e VRN e TR G T TN Bt e A B e e R T
DR . A - AT ’ A J B T e, yor T N Yy : S e : LR RN - t

PR

12. Packaging

- The ARM is packaged in an 84-pin JEDEC B ceramic leadless chip carrier, or a JEDEC C plastic leaded
carrier (PLCC).

3
T R A _ <
R E B M
9 VASFTORDRPPBDTDDDDGDTG GV
B D NEI RREP/ HH/ BP3 3 2 2 2 P S
DS TaQQTQCW?12 WETI 10987 AS
P VI VI O S D I I O O T R Y
1110 9 8 7 6 5 4 3 2 1 84838281 807978 77 7675
cpe A2 74 D26
M1 B3 . 73] D25 ,
Mo 314 7203 D24 ,
SEQ P15 71 D23 '
ALE 16 70} D22
A25 F‘” s9] D21
3 A24 P18 68} D20
A23 19 87 D19
A22 320 . s6} D18
A A21 21 ARM 650 D17
A20 P22 ACORN 64} D16
" Ate =23 V(C2333 63 D15
- A18 |24 62y D14
A7 BB2s 51 D13
A6 326 604 D12
A5 =27 594 D11
A14 328 58 D10
A13 329 5704 D9 ;
A12 30 s6c] Ds ’:
A1l 31 55 vDD
vop |32 544 VSS
W 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
i o0 nnoonnooanonooaoonoaonoongr
V AAAAAAAAAAAADDODT DTDT DT DTD
. S 1 98 7 65 4321080123 4586 7
3 S o E
3
5
|
|
ARM Datasheet 73

Chapter 12

(|

Suitable sockets for the devices are:
() AMP 55225-1 for the ceramic leadless chip carrier.
(i) Bumndy QILE84P-410T for the plastic leaded chip carrier (PLCC).

® ®m ®

++++F 4
+ Rttt

78 80 2

et 15
o ery i
s s | ot s
s o SRS

view

sl Les oot b Lz

ot o - SR
ot o | SERpY
SR STRp,
at o SR
o+ F+++FFF T Ty 4
A A S A A o o o

49 47 45 39 37

s A
+ + 3 +
T

T
® W W e W (W

L

/

ol
ol
et e e

——

wy

74 ARM Datasheet

o mmmae

1
i urr—— W

— - ERA SR NS - ARy bt o T"{« 'g“l"ff@}
R ¥ '\\" L3y WL "‘5»‘:{;,5\-5 ;’t;;“sg?*‘f* :;x :2‘} .S’.’:}‘*_E, Q::X\ﬁ*[“r{{f}u"z’?@ﬁ?m‘ NLE) At

A e ARV
SR AT iy

)

13. Compatibility with Prototype ARMs

=Y

'13.1 Plug-in compatibility
This ARM chip has been designed to plug into boards built to accept the prototype ARM devices as
far as possible.

The only pin changes between the prototype ARMs and the present devices are the additional pins to
support the Co-Processor interface. CPI uses a previously unused pin, and so long as this is not
connected no problem will arise. CPA and CPB use pins which were previously allocated to power

\(' and ground connections, and if so connected will cause all Co-Processors to appear absent, which is
: almost certainly the case for prototype ARM boards! CPB will, however, be connected to ground
‘(v rather than Sv, which will cause the return address from the undefined instruction trap to be wrong. If
~ the indefined instruction trap is to be used, for instance for floating point emulation, CPB should be
ticd high.
¢ Signal tmings arc in general considerably faster than they were on the prototype devices, and this

could cause problems in some circuits.

13.2 Bug fixes

0 Various problems on the prototype chips have been fixed.
The following bugs affected all programmers:

0 * RRX produced carry out equal to the inclusive OR of bits O and 31, thus giving the wrong
answer when bit 31 = 1 and bit 0 = 0.

O * ROR by a register which is 32*n, n <> 0, produced carry out equal to zero instead of bit 31.

* LDM of one register within the last 3 words of a page where the next page is inaccessible
\) appeared to ‘Data Abort’ even though the load was legal.

The following bug affected only non-user mode programmers:

) * Load multiple of a single register with PSR update requested using a mode specific register (eg
R13) as base could writeback to the wrong register bank (most probably the user R13 was
corrupted). Thus retumn from supervisor or interrupt code by LDMFD R13!,(PC}* had to be “
avoided.

The following bug affected only hardware designers:

7 * An abort signalled during an internal cycle where ARM had not requested memory still caused
the processor to abort. (This problem did not arise in MEMC based systems, since MEMC is
prevented from producing an abort under such circumstances.)

g
13.3 Design differences
—‘ The following design changes affect all programmers:
* Multiply and multiply accumulate instructions have been added.
Y

- * The Co-Processor interface has been added, using what was previously undefined instruction
space. Note that undefined instructions which fail on condition code will now be skipped,
whereas previously they trapped.

ARM Datasheet 75

Chapter 13

LDR, STR with the register offsct shifted by a register specified amount have been removed,
and arc now undefined instructions.

The data processing instrucion space has been more fully decoded, and previously redundant
codes are now uscd for multiply and undefined instructions.

The following changes affect only non-user mode programmers:

*

*

Two cxtra FIQ registers have been added.

LDM of user registers from supervisor mode has been added.

The following changes affect only hardware designers:

*

*

76

Some cycle control signal states have been modificed.

The instruction pipeline now uscs static logic, as do some other latches, in order to allow for
the Co-Processor busy-wait state.

The new chip will go faster, and all the control signal timings should change accordingly.

The multiply and Co-Processor operations arc incompatibic with MEMC, and some external
logic is required for correct functioning. (This is detailed in the chapters on the memory and
Co-Processor interfaces.)

ARM Datasheet

)

»

{

™ ® ®

ol {

™™ (W
-

V-4

m

S IR e
hm‘nwimnﬂmum;m-mn -

o om o

(M
‘!ll

